PocketSphinx  0.6
ptm_mgau.c
1 /* -*- c-basic-offset: 4; indent-tabs-mode: nil -*- */
2 /* ====================================================================
3  * Copyright (c) 1999-2010 Carnegie Mellon University. All rights
4  * reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  *
10  * 1. Redistributions of source code must retain the above copyright
11  * notice, this list of conditions and the following disclaimer.
12  *
13  * 2. Redistributions in binary form must reproduce the above copyright
14  * notice, this list of conditions and the following disclaimer in
15  * the documentation and/or other materials provided with the
16  * distribution.
17  *
18  * This work was supported in part by funding from the Defense Advanced
19  * Research Projects Agency and the National Science Foundation of the
20  * United States of America, and the CMU Sphinx Speech Consortium.
21  *
22  * THIS SOFTWARE IS PROVIDED BY CARNEGIE MELLON UNIVERSITY ``AS IS'' AND
23  * ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
24  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
25  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL CARNEGIE MELLON UNIVERSITY
26  * NOR ITS EMPLOYEES BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
27  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
28  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
32  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  *
34  * ====================================================================
35  *
36  */
37 
38 /* System headers */
39 #include <stdio.h>
40 #include <stdlib.h>
41 #include <string.h>
42 #include <assert.h>
43 #include <limits.h>
44 #include <math.h>
45 #if defined(__ADSPBLACKFIN__)
46 #elif !defined(_WIN32_WCE)
47 #include <sys/types.h>
48 #endif
49 
50 /* SphinxBase headers */
51 #include <sphinx_config.h>
52 #include <sphinxbase/cmd_ln.h>
53 #include <sphinxbase/fixpoint.h>
54 #include <sphinxbase/ckd_alloc.h>
55 #include <sphinxbase/bio.h>
56 #include <sphinxbase/err.h>
57 #include <sphinxbase/prim_type.h>
58 
59 /* Local headers */
60 #include "tied_mgau_common.h"
61 #include "ptm_mgau.h"
62 
63 static ps_mgaufuncs_t ptm_mgau_funcs = {
64  "ptm",
65  ptm_mgau_frame_eval, /* frame_eval */
66  ptm_mgau_mllr_transform, /* transform */
67  ptm_mgau_free /* free */
68 };
69 
70 #define COMPUTE_GMM_MAP(_idx) \
71  diff[_idx] = obs[_idx] - mean[_idx]; \
72  sqdiff[_idx] = MFCCMUL(diff[_idx], diff[_idx]); \
73  compl[_idx] = MFCCMUL(sqdiff[_idx], var[_idx]);
74 #define COMPUTE_GMM_REDUCE(_idx) \
75  d = GMMSUB(d, compl[_idx]);
76 
77 static void
78 insertion_sort_topn(ptm_topn_t *topn, int i, int32 d)
79 {
80  ptm_topn_t vtmp;
81  int j;
82 
83  topn[i].score = d;
84  if (i == 0)
85  return;
86  vtmp = topn[i];
87  for (j = i - 1; j >= 0 && d > topn[j].score; j--) {
88  topn[j + 1] = topn[j];
89  }
90  topn[j + 1] = vtmp;
91 }
92 
93 static int
94 eval_topn(ptm_mgau_t *s, int cb, int feat, mfcc_t *z)
95 {
96  ptm_topn_t *topn;
97  int i, ceplen;
98 
99  topn = s->f->topn[cb][feat];
100  ceplen = s->g->featlen[feat];
101 
102  for (i = 0; i < s->max_topn; i++) {
103  mfcc_t *mean, diff[4], sqdiff[4], compl[4]; /* diff, diff^2, component likelihood */
104  mfcc_t *var, d;
105  mfcc_t *obs;
106  int32 cw, j;
107 
108  cw = topn[i].cw;
109  mean = s->g->mean[cb][feat][0] + cw * ceplen;
110  var = s->g->var[cb][feat][0] + cw * ceplen;
111  d = s->g->det[cb][feat][cw];
112  obs = z;
113  for (j = 0; j < ceplen % 4; ++j) {
114  diff[0] = *obs++ - *mean++;
115  sqdiff[0] = MFCCMUL(diff[0], diff[0]);
116  compl[0] = MFCCMUL(sqdiff[0], *var);
117  d = GMMSUB(d, compl[0]);
118  ++var;
119  }
120  /* We could vectorize this but it's unlikely to make much
121  * difference as the outer loop here isn't very big. */
122  for (;j < ceplen; j += 4) {
123  COMPUTE_GMM_MAP(0);
124  COMPUTE_GMM_MAP(1);
125  COMPUTE_GMM_MAP(2);
126  COMPUTE_GMM_MAP(3);
127  COMPUTE_GMM_REDUCE(0);
128  COMPUTE_GMM_REDUCE(1);
129  COMPUTE_GMM_REDUCE(2);
130  COMPUTE_GMM_REDUCE(3);
131  var += 4;
132  obs += 4;
133  mean += 4;
134  }
135  insertion_sort_topn(topn, i, (int32)d);
136  }
137 
138  return topn[0].score;
139 }
140 
141 /* This looks bad, but it actually isn't. Less than 1% of eval_cb's
142  * time is spent doing this. */
143 static void
144 insertion_sort_cb(ptm_topn_t **cur, ptm_topn_t *worst, ptm_topn_t *best,
145  int cw, int32 intd)
146 {
147  for (*cur = worst - 1; *cur >= best && intd >= (*cur)->score; --*cur)
148  memcpy(*cur + 1, *cur, sizeof(**cur));
149  ++*cur;
150  (*cur)->cw = cw;
151  (*cur)->score = intd;
152 }
153 
154 static int
155 eval_cb(ptm_mgau_t *s, int cb, int feat, mfcc_t *z)
156 {
157  ptm_topn_t *worst, *best, *topn;
158  mfcc_t *mean;
159  mfcc_t *var, *det, *detP, *detE;
160  int32 i, ceplen;
161 
162  best = topn = s->f->topn[cb][feat];
163  worst = topn + (s->max_topn - 1);
164  mean = s->g->mean[cb][feat][0];
165  var = s->g->var[cb][feat][0];
166  det = s->g->det[cb][feat];
167  detE = det + s->g->n_density;
168  ceplen = s->g->featlen[feat];
169 
170  for (detP = det; detP < detE; ++detP) {
171  mfcc_t diff[4], sqdiff[4], compl[4]; /* diff, diff^2, component likelihood */
172  mfcc_t d, thresh;
173  mfcc_t *obs;
174  ptm_topn_t *cur;
175  int32 cw, j;
176 
177  d = *detP;
178  thresh = (mfcc_t) worst->score; /* Avoid int-to-float conversions */
179  obs = z;
180  cw = detP - det;
181 
182  /* Unroll the loop starting with the first dimension(s). In
183  * theory this might be a bit faster if this Gaussian gets
184  * "knocked out" by C0. In practice not. */
185  for (j = 0; (j < ceplen % 4) && (d >= thresh); ++j) {
186  diff[0] = *obs++ - *mean++;
187  sqdiff[0] = MFCCMUL(diff[0], diff[0]);
188  compl[0] = MFCCMUL(sqdiff[0], *var++);
189  d = GMMSUB(d, compl[0]);
190  }
191  /* Now do 4 dimensions at a time. You'd think that GCC would
192  * vectorize this? Apparently not. And it's right, because
193  * that won't make this any faster, at least on x86-64. */
194  for (; j < ceplen && d >= thresh; j += 4) {
195  COMPUTE_GMM_MAP(0);
196  COMPUTE_GMM_MAP(1);
197  COMPUTE_GMM_MAP(2);
198  COMPUTE_GMM_MAP(3);
199  COMPUTE_GMM_REDUCE(0);
200  COMPUTE_GMM_REDUCE(1);
201  COMPUTE_GMM_REDUCE(2);
202  COMPUTE_GMM_REDUCE(3);
203  var += 4;
204  obs += 4;
205  mean += 4;
206  }
207  if (j < ceplen) {
208  /* terminated early, so not in topn */
209  mean += (ceplen - j);
210  var += (ceplen - j);
211  continue;
212  }
213  if (d < thresh)
214  continue;
215  for (i = 0; i < s->max_topn; i++) {
216  /* already there, so don't need to insert */
217  if (topn[i].cw == cw)
218  break;
219  }
220  if (i < s->max_topn)
221  continue; /* already there. Don't insert */
222  insertion_sort_cb(&cur, worst, best, cw, (int32)d);
223  }
224 
225  return best->score;
226 }
227 
231 static int
232 ptm_mgau_codebook_eval(ptm_mgau_t *s, mfcc_t **z, int frame)
233 {
234  int i, j;
235 
236  /* First evaluate top-N from previous frame. */
237  for (i = 0; i < s->g->n_mgau; ++i)
238  for (j = 0; j < s->g->n_feat; ++j)
239  eval_topn(s, i, j, z[j]);
240 
241  /* If frame downsampling is in effect, possibly do nothing else. */
242  if (frame % s->ds_ratio)
243  return 0;
244 
245  /* Evaluate remaining codebooks. */
246  for (i = 0; i < s->g->n_mgau; ++i) {
247  if (bitvec_is_clear(s->f->mgau_active, i))
248  continue;
249  for (j = 0; j < s->g->n_feat; ++j) {
250  eval_cb(s, i, j, z[j]);
251  }
252  }
253 
254  /* Normalize densities to produce "posterior probabilities",
255  * i.e. things with a reasonable dynamic range, then scale and
256  * clamp them to the acceptable range. This is actually done
257  * solely to ensure that we can use fast_logmath_add(). Note that
258  * unless we share the same normalizer across all codebooks for
259  * each feature stream we get defective scores (that's why these
260  * loops are inside out - doing it per-feature should give us
261  * greater precision). */
262  for (j = 0; j < s->g->n_feat; ++j) {
263  int32 norm = 0x7fffffff;
264  for (i = 0; i < s->g->n_mgau; ++i) {
265  if (bitvec_is_clear(s->f->mgau_active, i))
266  continue;
267  if (norm > s->f->topn[i][j][0].score >> SENSCR_SHIFT)
268  norm = s->f->topn[i][j][0].score >> SENSCR_SHIFT;
269  }
270  assert(norm != 0x7fffffff);
271  for (i = 0; i < s->g->n_mgau; ++i) {
272  int32 k;
273  if (bitvec_is_clear(s->f->mgau_active, i))
274  continue;
275  for (k = 0; k < s->max_topn; ++k) {
276  s->f->topn[i][j][k].score >>= SENSCR_SHIFT;
277  s->f->topn[i][j][k].score -= norm;
278  s->f->topn[i][j][k].score = -s->f->topn[i][j][k].score;
279  if (s->f->topn[i][j][k].score > MAX_NEG_ASCR)
280  s->f->topn[i][j][k].score = MAX_NEG_ASCR;
281  }
282  }
283  }
284 
285  return 0;
286 }
287 
288 static int
289 ptm_mgau_calc_cb_active(ptm_mgau_t *s, uint8 *senone_active,
290  int32 n_senone_active, int compallsen)
291 {
292  int i, lastsen;
293 
294  if (compallsen) {
295  bitvec_set_all(s->f->mgau_active, s->g->n_mgau);
296  return 0;
297  }
298  bitvec_clear_all(s->f->mgau_active, s->g->n_mgau);
299  for (lastsen = i = 0; i < n_senone_active; ++i) {
300  int sen = senone_active[i] + lastsen;
301  int cb = s->sen2cb[sen];
302  bitvec_set(s->f->mgau_active, cb);
303  lastsen = sen;
304  }
305  E_DEBUG(1, ("Active codebooks:"));
306  for (i = 0; i < s->g->n_mgau; ++i) {
307  if (bitvec_is_clear(s->f->mgau_active, i))
308  continue;
309  E_DEBUGCONT(1, (" %d", i));
310  }
311  E_DEBUGCONT(1, ("\n"));
312  return 0;
313 }
314 
318 static int
319 ptm_mgau_senone_eval(ptm_mgau_t *s, int16 *senone_scores,
320  uint8 *senone_active, int32 n_senone_active,
321  int compall)
322 {
323  int i, lastsen, bestscore;
324 
325  memset(senone_scores, 0, s->n_sen * sizeof(*senone_scores));
326  /* FIXME: This is the non-cache-efficient way to do this. We want
327  * to evaluate one codeword at a time but this requires us to have
328  * a reverse codebook to senone mapping, which we don't have
329  * (yet), since different codebooks have different top-N
330  * codewords. */
331  if (compall)
332  n_senone_active = s->n_sen;
333  bestscore = 0x7fffffff;
334  for (lastsen = i = 0; i < n_senone_active; ++i) {
335  int sen, f, cb;
336  int ascore;
337 
338  if (compall)
339  sen = i;
340  else
341  sen = senone_active[i] + lastsen;
342  lastsen = sen;
343  cb = s->sen2cb[sen];
344 
345  if (bitvec_is_clear(s->f->mgau_active, cb)) {
346  int j;
347  /* Because senone_active is deltas we can't really "knock
348  * out" senones from pruned codebooks, and in any case,
349  * it wouldn't make any difference to the search code,
350  * which doesn't expect senone_active to change. */
351  for (f = 0; f < s->g->n_feat; ++f) {
352  for (j = 0; j < s->max_topn; ++j) {
353  s->f->topn[cb][f][j].score = MAX_NEG_ASCR;
354  }
355  }
356  }
357  /* For each feature, log-sum codeword scores + mixw to get
358  * feature density, then sum (multiply) to get ascore */
359  ascore = 0;
360  for (f = 0; f < s->g->n_feat; ++f) {
361  ptm_topn_t *topn;
362  int j, fden = 0;
363  topn = s->f->topn[cb][f];
364  for (j = 0; j < s->max_topn; ++j) {
365  int mixw;
366  /* Find mixture weight for this codeword. */
367  if (s->mixw_cb) {
368  int dcw = s->mixw[f][topn[j].cw][sen/2];
369  dcw = (dcw & 1) ? dcw >> 4 : dcw & 0x0f;
370  mixw = s->mixw_cb[dcw];
371  }
372  else {
373  mixw = s->mixw[f][topn[j].cw][sen];
374  }
375  if (j == 0)
376  fden = mixw + topn[j].score;
377  else
378  fden = fast_logmath_add(s->lmath_8b, fden,
379  mixw + topn[j].score);
380  E_DEBUG(3, ("fden[%d][%d] l+= %d + %d = %d\n",
381  sen, f, mixw, topn[j].score, fden));
382  }
383  ascore += fden;
384  }
385  if (ascore < bestscore) bestscore = ascore;
386  senone_scores[sen] = ascore;
387  }
388  /* Normalize the scores again (finishing the job we started above
389  * in ptm_mgau_codebook_eval...) */
390  for (i = 0; i < s->n_sen; ++i) {
391  senone_scores[i] -= bestscore;
392  }
393 
394  return 0;
395 }
396 
400 int32
402  int16 *senone_scores,
403  uint8 *senone_active,
404  int32 n_senone_active,
405  mfcc_t ** featbuf, int32 frame,
406  int32 compallsen)
407 {
408  ptm_mgau_t *s = (ptm_mgau_t *)ps;
409  int fast_eval_idx;
410 
411  /* Find the appropriate frame in the rotating history buffer
412  * corresponding to the requested input frame. No bounds checking
413  * is done here, which just means you'll get semi-random crap if
414  * you request a frame in the future or one that's too far in the
415  * past. Since the history buffer is just used for fast match
416  * that might not be fatal. */
417  fast_eval_idx = frame % s->n_fast_hist;
418  s->f = s->hist + fast_eval_idx;
419  /* Compute the top-N codewords for every codebook, unless this
420  * is a past frame, in which case we already have them (we
421  * hope!) */
422  if (frame >= ps_mgau_base(ps)->frame_idx) {
423  ptm_fast_eval_t *lastf;
424  /* Get the previous frame's top-N information (on the
425  * first frame of the input this is just all WORST_DIST,
426  * no harm in that) */
427  if (fast_eval_idx == 0)
428  lastf = s->hist + s->n_fast_hist - 1;
429  else
430  lastf = s->hist + fast_eval_idx - 1;
431  /* Copy in initial top-N info */
432  memcpy(s->f->topn[0][0], lastf->topn[0][0],
433  s->g->n_mgau * s->g->n_feat * s->max_topn * sizeof(ptm_topn_t));
434  /* Generate initial active codebook list (this might not be
435  * necessary) */
436  ptm_mgau_calc_cb_active(s, senone_active, n_senone_active, compallsen);
437  /* Now evaluate top-N, prune, and evaluate remaining codebooks. */
438  ptm_mgau_codebook_eval(s, featbuf, frame);
439  }
440  /* Evaluate intersection of active senones and active codebooks. */
441  ptm_mgau_senone_eval(s, senone_scores, senone_active,
442  n_senone_active, compallsen);
443 
444  return 0;
445 }
446 
447 static int32
448 read_sendump(ptm_mgau_t *s, bin_mdef_t *mdef, char const *file)
449 {
450  FILE *fp;
451  char line[1000];
452  int32 i, n, r, c;
453  int32 do_swap, do_mmap;
454  OFF_T offset;
455  int n_clust = 0;
456  int n_feat = s->g->n_feat;
457  int n_density = s->g->n_density;
458  int n_sen = bin_mdef_n_sen(mdef);
459  int n_bits = 8;
460 
461  s->n_sen = n_sen; /* FIXME: Should have been done earlier */
462  do_mmap = cmd_ln_boolean_r(s->config, "-mmap");
463 
464  if ((fp = fopen(file, "rb")) == NULL)
465  return -1;
466 
467  E_INFO("Loading senones from dump file %s\n", file);
468  /* Read title size, title */
469  if (fread(&n, sizeof(int32), 1, fp) != 1) {
470  E_ERROR_SYSTEM("Failed to read title size from %s", file);
471  goto error_out;
472  }
473  /* This is extremely bogus */
474  do_swap = 0;
475  if (n < 1 || n > 999) {
476  SWAP_INT32(&n);
477  if (n < 1 || n > 999) {
478  E_ERROR("Title length %x in dump file %s out of range\n", n, file);
479  goto error_out;
480  }
481  do_swap = 1;
482  }
483  if (fread(line, sizeof(char), n, fp) != n) {
484  E_ERROR_SYSTEM("Cannot read title");
485  goto error_out;
486  }
487  if (line[n - 1] != '\0') {
488  E_ERROR("Bad title in dump file\n");
489  goto error_out;
490  }
491  E_INFO("%s\n", line);
492 
493  /* Read header size, header */
494  if (fread(&n, sizeof(n), 1, fp) != 1) {
495  E_ERROR_SYSTEM("Failed to read header size from %s", file);
496  goto error_out;
497  }
498  if (do_swap) SWAP_INT32(&n);
499  if (fread(line, sizeof(char), n, fp) != n) {
500  E_ERROR_SYSTEM("Cannot read header");
501  goto error_out;
502  }
503  if (line[n - 1] != '\0') {
504  E_ERROR("Bad header in dump file\n");
505  goto error_out;
506  }
507 
508  /* Read other header strings until string length = 0 */
509  for (;;) {
510  if (fread(&n, sizeof(n), 1, fp) != 1) {
511  E_ERROR_SYSTEM("Failed to read header string size from %s", file);
512  goto error_out;
513  }
514  if (do_swap) SWAP_INT32(&n);
515  if (n == 0)
516  break;
517  if (fread(line, sizeof(char), n, fp) != n) {
518  E_ERROR_SYSTEM("Cannot read header");
519  goto error_out;
520  }
521  /* Look for a cluster count, if present */
522  if (!strncmp(line, "feature_count ", strlen("feature_count "))) {
523  n_feat = atoi(line + strlen("feature_count "));
524  }
525  if (!strncmp(line, "mixture_count ", strlen("mixture_count "))) {
526  n_density = atoi(line + strlen("mixture_count "));
527  }
528  if (!strncmp(line, "model_count ", strlen("model_count "))) {
529  n_sen = atoi(line + strlen("model_count "));
530  }
531  if (!strncmp(line, "cluster_count ", strlen("cluster_count "))) {
532  n_clust = atoi(line + strlen("cluster_count "));
533  }
534  if (!strncmp(line, "cluster_bits ", strlen("cluster_bits "))) {
535  n_bits = atoi(line + strlen("cluster_bits "));
536  }
537  }
538 
539  /* Defaults for #rows, #columns in mixw array. */
540  c = n_sen;
541  r = n_density;
542  if (n_clust == 0) {
543  /* Older mixw files have them here, and they might be padded. */
544  if (fread(&r, sizeof(r), 1, fp) != 1) {
545  E_ERROR_SYSTEM("Cannot read #rows");
546  goto error_out;
547  }
548  if (do_swap) SWAP_INT32(&r);
549  if (fread(&c, sizeof(c), 1, fp) != 1) {
550  E_ERROR_SYSTEM("Cannot read #columns");
551  goto error_out;
552  }
553  if (do_swap) SWAP_INT32(&c);
554  E_INFO("Rows: %d, Columns: %d\n", r, c);
555  }
556 
557  if (n_feat != s->g->n_feat) {
558  E_ERROR("Number of feature streams mismatch: %d != %d\n",
559  n_feat, s->g->n_feat);
560  goto error_out;
561  }
562  if (n_density != s->g->n_density) {
563  E_ERROR("Number of densities mismatch: %d != %d\n",
564  n_density, s->g->n_density);
565  goto error_out;
566  }
567  if (n_sen != s->n_sen) {
568  E_ERROR("Number of senones mismatch: %d != %d\n",
569  n_sen, s->n_sen);
570  goto error_out;
571  }
572 
573  if (!((n_clust == 0) || (n_clust == 15) || (n_clust == 16))) {
574  E_ERROR("Cluster count must be 0, 15, or 16\n");
575  goto error_out;
576  }
577  if (n_clust == 15)
578  ++n_clust;
579 
580  if (!((n_bits == 8) || (n_bits == 4))) {
581  E_ERROR("Cluster count must be 4 or 8\n");
582  goto error_out;
583  }
584 
585  if (do_mmap) {
586  E_INFO("Using memory-mapped I/O for senones\n");
587  }
588  offset = FTELL(fp);
589 
590  /* Allocate memory for pdfs (or memory map them) */
591  if (do_mmap) {
592  s->sendump_mmap = mmio_file_read(file);
593  /* Get cluster codebook if any. */
594  if (n_clust) {
595  s->mixw_cb = ((uint8 *) mmio_file_ptr(s->sendump_mmap)) + offset;
596  offset += n_clust;
597  }
598  }
599  else {
600  /* Get cluster codebook if any. */
601  if (n_clust) {
602  s->mixw_cb = ckd_calloc(1, n_clust);
603  if (fread(s->mixw_cb, 1, n_clust, fp) != (size_t) n_clust) {
604  E_ERROR("Failed to read %d bytes from sendump\n", n_clust);
605  goto error_out;
606  }
607  }
608  }
609 
610  /* Set up pointers, or read, or whatever */
611  if (s->sendump_mmap) {
612  s->mixw = ckd_calloc_2d(n_feat, n_density, sizeof(*s->mixw));
613  for (n = 0; n < n_feat; n++) {
614  int step = c;
615  if (n_bits == 4)
616  step = (step + 1) / 2;
617  for (i = 0; i < r; i++) {
618  s->mixw[n][i] = ((uint8 *) mmio_file_ptr(s->sendump_mmap)) + offset;
619  offset += step;
620  }
621  }
622  }
623  else {
624  s->mixw = ckd_calloc_3d(n_feat, n_density, n_sen, sizeof(***s->mixw));
625  /* Read pdf values and ids */
626  for (n = 0; n < n_feat; n++) {
627  int step = c;
628  if (n_bits == 4)
629  step = (step + 1) / 2;
630  for (i = 0; i < r; i++) {
631  if (fread(s->mixw[n][i], sizeof(***s->mixw), step, fp)
632  != (size_t) step) {
633  E_ERROR("Failed to read %d bytes from sendump\n", step);
634  goto error_out;
635  }
636  }
637  }
638  }
639 
640  fclose(fp);
641  return 0;
642 error_out:
643  fclose(fp);
644  return -1;
645 }
646 
647 static int32
648 read_mixw(ptm_mgau_t * s, char const *file_name, double SmoothMin)
649 {
650  char **argname, **argval;
651  char eofchk;
652  FILE *fp;
653  int32 byteswap, chksum_present;
654  uint32 chksum;
655  float32 *pdf;
656  int32 i, f, c, n;
657  int32 n_sen;
658  int32 n_feat;
659  int32 n_comp;
660  int32 n_err;
661 
662  E_INFO("Reading mixture weights file '%s'\n", file_name);
663 
664  if ((fp = fopen(file_name, "rb")) == NULL)
665  E_FATAL_SYSTEM("Failed to open mixture file '%s' for reading", file_name);
666 
667  /* Read header, including argument-value info and 32-bit byteorder magic */
668  if (bio_readhdr(fp, &argname, &argval, &byteswap) < 0)
669  E_FATAL("Failed to read header from '%s'\n", file_name);
670 
671  /* Parse argument-value list */
672  chksum_present = 0;
673  for (i = 0; argname[i]; i++) {
674  if (strcmp(argname[i], "version") == 0) {
675  if (strcmp(argval[i], MGAU_MIXW_VERSION) != 0)
676  E_WARN("Version mismatch(%s): %s, expecting %s\n",
677  file_name, argval[i], MGAU_MIXW_VERSION);
678  }
679  else if (strcmp(argname[i], "chksum0") == 0) {
680  chksum_present = 1; /* Ignore the associated value */
681  }
682  }
683  bio_hdrarg_free(argname, argval);
684  argname = argval = NULL;
685 
686  chksum = 0;
687 
688  /* Read #senones, #features, #codewords, arraysize */
689  if ((bio_fread(&n_sen, sizeof(int32), 1, fp, byteswap, &chksum) != 1)
690  || (bio_fread(&n_feat, sizeof(int32), 1, fp, byteswap, &chksum) !=
691  1)
692  || (bio_fread(&n_comp, sizeof(int32), 1, fp, byteswap, &chksum) !=
693  1)
694  || (bio_fread(&n, sizeof(int32), 1, fp, byteswap, &chksum) != 1)) {
695  E_FATAL("bio_fread(%s) (arraysize) failed\n", file_name);
696  }
697  if (n_feat != s->g->n_feat)
698  E_FATAL("#Features streams(%d) != %d\n", n_feat, s->g->n_feat);
699  if (n != n_sen * n_feat * n_comp) {
700  E_FATAL
701  ("%s: #float32s(%d) doesn't match header dimensions: %d x %d x %d\n",
702  file_name, i, n_sen, n_feat, n_comp);
703  }
704 
705  /* n_sen = number of mixture weights per codeword, which is
706  * fixed at the number of senones since we have only one codebook.
707  */
708  s->n_sen = n_sen;
709 
710  /* Quantized mixture weight arrays. */
711  s->mixw = ckd_calloc_3d(s->g->n_feat, s->g->n_density,
712  n_sen, sizeof(***s->mixw));
713 
714  /* Temporary structure to read in floats before conversion to (int32) logs3 */
715  pdf = (float32 *) ckd_calloc(n_comp, sizeof(float32));
716 
717  /* Read senone probs data, normalize, floor, convert to logs3, truncate to 8 bits */
718  n_err = 0;
719  for (i = 0; i < n_sen; i++) {
720  for (f = 0; f < n_feat; f++) {
721  if (bio_fread((void *) pdf, sizeof(float32),
722  n_comp, fp, byteswap, &chksum) != n_comp) {
723  E_FATAL("bio_fread(%s) (arraydata) failed\n", file_name);
724  }
725 
726  /* Normalize and floor */
727  if (vector_sum_norm(pdf, n_comp) <= 0.0)
728  n_err++;
729  vector_floor(pdf, n_comp, SmoothMin);
730  vector_sum_norm(pdf, n_comp);
731 
732  /* Convert to LOG, quantize, and transpose */
733  for (c = 0; c < n_comp; c++) {
734  int32 qscr;
735 
736  qscr = -logmath_log(s->lmath_8b, pdf[c]);
737  if ((qscr > MAX_NEG_MIXW) || (qscr < 0))
738  qscr = MAX_NEG_MIXW;
739  s->mixw[f][c][i] = qscr;
740  }
741  }
742  }
743  if (n_err > 0)
744  E_WARN("Weight normalization failed for %d mixture weights components\n", n_err);
745 
746  ckd_free(pdf);
747 
748  if (chksum_present)
749  bio_verify_chksum(fp, byteswap, chksum);
750 
751  if (fread(&eofchk, 1, 1, fp) == 1)
752  E_FATAL("More data than expected in %s\n", file_name);
753 
754  fclose(fp);
755 
756  E_INFO("Read %d x %d x %d mixture weights\n", n_sen, n_feat, n_comp);
757  return n_sen;
758 }
759 
760 ps_mgau_t *
761 ptm_mgau_init(acmod_t *acmod, bin_mdef_t *mdef)
762 {
763  ptm_mgau_t *s;
764  ps_mgau_t *ps;
765  char const *sendump_path;
766  int i;
767 
768  s = ckd_calloc(1, sizeof(*s));
769  s->config = acmod->config;
770 
771  s->lmath = logmath_retain(acmod->lmath);
772  /* Log-add table. */
773  s->lmath_8b = logmath_init(logmath_get_base(acmod->lmath), SENSCR_SHIFT, TRUE);
774  if (s->lmath_8b == NULL)
775  goto error_out;
776  /* Ensure that it is only 8 bits wide so that fast_logmath_add() works. */
777  if (logmath_get_width(s->lmath_8b) != 1) {
778  E_ERROR("Log base %f is too small to represent add table in 8 bits\n",
779  logmath_get_base(s->lmath_8b));
780  goto error_out;
781  }
782 
783  /* Read means and variances. */
784  if ((s->g = gauden_init(cmd_ln_str_r(s->config, "-mean"),
785  cmd_ln_str_r(s->config, "-var"),
786  cmd_ln_float32_r(s->config, "-varfloor"),
787  s->lmath)) == NULL)
788  goto error_out;
789  /* We only support 256 codebooks or less (like 640k or 2GB, this
790  * should be enough for anyone) */
791  if (s->g->n_mgau > 256) {
792  E_INFO("Number of codebooks exceeds 256: %d\n", s->g->n_mgau);
793  goto error_out;
794  }
795  if (s->g->n_mgau != bin_mdef_n_ciphone(mdef)) {
796  E_INFO("Number of codebooks doesn't match number of ciphones, doesn't look like PTM: %d != %d\n", s->g->n_mgau, bin_mdef_n_ciphone(mdef));
797  goto error_out;
798  }
799  /* Verify n_feat and veclen, against acmod. */
800  if (s->g->n_feat != feat_dimension1(acmod->fcb)) {
801  E_ERROR("Number of streams does not match: %d != %d\n",
802  s->g->n_feat, feat_dimension1(acmod->fcb));
803  goto error_out;
804  }
805  for (i = 0; i < s->g->n_feat; ++i) {
806  if (s->g->featlen[i] != feat_dimension2(acmod->fcb, i)) {
807  E_ERROR("Dimension of stream %d does not match: %d != %d\n",
808  s->g->featlen[i], feat_dimension2(acmod->fcb, i));
809  goto error_out;
810  }
811  }
812  /* Read mixture weights. */
813  if ((sendump_path = cmd_ln_str_r(s->config, "-sendump"))) {
814  if (read_sendump(s, acmod->mdef, sendump_path) < 0) {
815  goto error_out;
816  }
817  }
818  else {
819  if (read_mixw(s, cmd_ln_str_r(s->config, "-mixw"),
820  cmd_ln_float32_r(s->config, "-mixwfloor")) < 0) {
821  goto error_out;
822  }
823  }
824  s->ds_ratio = cmd_ln_int32_r(s->config, "-ds");
825  s->max_topn = cmd_ln_int32_r(s->config, "-topn");
826  E_INFO("Maximum top-N: %d\n", s->max_topn);
827 
828  /* Assume mapping of senones to their base phones, though this
829  * will become more flexible in the future. */
830  s->sen2cb = ckd_calloc(s->n_sen, sizeof(*s->sen2cb));
831  for (i = 0; i < s->n_sen; ++i)
832  s->sen2cb[i] = bin_mdef_sen2cimap(acmod->mdef, i);
833 
834  /* Allocate fast-match history buffers. We need enough for the
835  * phoneme lookahead window, plus the current frame, plus one for
836  * good measure? (FIXME: I don't remember why) */
837  s->n_fast_hist = cmd_ln_int32_r(s->config, "-pl_window") + 2;
838  s->hist = ckd_calloc(s->n_fast_hist, sizeof(*s->hist));
839  /* s->f will be a rotating pointer into s->hist. */
840  s->f = s->hist;
841  for (i = 0; i < s->n_fast_hist; ++i) {
842  int j, k, m;
843  /* Top-N codewords for every codebook and feature. */
844  s->hist[i].topn = ckd_calloc_3d(s->g->n_mgau, s->g->n_feat,
845  s->max_topn, sizeof(ptm_topn_t));
846  /* Initialize them to sane (yet arbitrary) defaults. */
847  for (j = 0; j < s->g->n_mgau; ++j) {
848  for (k = 0; k < s->g->n_feat; ++k) {
849  for (m = 0; m < s->max_topn; ++m) {
850  s->hist[i].topn[j][k][m].cw = m;
851  s->hist[i].topn[j][k][m].score = WORST_DIST;
852  }
853  }
854  }
855  /* Active codebook mapping (just codebook, not features,
856  at least not yet) */
857  s->hist[i].mgau_active = bitvec_alloc(s->g->n_mgau);
858  /* Start with them all on, prune them later. */
859  bitvec_set_all(s->hist[i].mgau_active, s->g->n_mgau);
860  }
861 
862  ps = (ps_mgau_t *)s;
863  ps->vt = &ptm_mgau_funcs;
864  return ps;
865 error_out:
866  ptm_mgau_free(ps_mgau_base(s));
867  return NULL;
868 }
869 
870 int
871 ptm_mgau_mllr_transform(ps_mgau_t *ps,
872  ps_mllr_t *mllr)
873 {
874  ptm_mgau_t *s = (ptm_mgau_t *)ps;
875  return gauden_mllr_transform(s->g, mllr, s->config);
876 }
877 
878 void
879 ptm_mgau_free(ps_mgau_t *ps)
880 {
881  ptm_mgau_t *s = (ptm_mgau_t *)ps;
882 
883  logmath_free(s->lmath);
884  logmath_free(s->lmath_8b);
885  if (s->sendump_mmap) {
886  ckd_free_2d(s->mixw);
887  mmio_file_unmap(s->sendump_mmap);
888  }
889  else {
890  ckd_free_3d(s->mixw);
891  }
892  ckd_free(s->sen2cb);
893  gauden_free(s->g);
894  ckd_free(s);
895 }
int32 n_density
Number gaussian densities in each codebook-feature stream.
Definition: ms_gauden.h:93
ptm_topn_t *** topn
Top-N for each codebook (mgau x feature x topn)
Definition: ptm_mgau.h:64
void gauden_free(gauden_t *g)
Release memory allocated by gauden_init.
Definition: ms_gauden.c:399
mfcc_t *** det
log(determinant) for each variance vector; actually, log(sqrt(2*pi*det))
Definition: ms_gauden.h:88
uint8 * sen2cb
Senone to codebook mapping.
Definition: ptm_mgau.h:73
logmath_t * lmath
Log-math computation.
Definition: acmod.h:151
int n_fast_hist
Number of past frames tracked.
Definition: ptm_mgau.h:82
gauden_t * g
Set of Gaussians.
Definition: ptm_mgau.h:71
int32 gauden_mllr_transform(gauden_t *s, ps_mllr_t *mllr, cmd_ln_t *config)
Transform Gaussians according to an MLLR matrix (or, eventually, more).
Definition: ms_gauden.c:550
gauden_t * gauden_init(char const *meanfile, char const *varfile, float32 varfloor, logmath_t *lmath)
Read mixture gaussian codebooks from the given files.
Definition: ms_gauden.c:361
int ptm_mgau_frame_eval(ps_mgau_t *s, int16 *senone_scores, uint8 *senone_active, int32 n_senone_active, mfcc_t **featbuf, int32 frame, int32 compallsen)
Compute senone scores for the active senones.
Definition: ptm_mgau.c:401
Fast phonetically-tied mixture evaluation.
cmd_ln_t * config
Configuration.
Definition: acmod.h:150
int32 * featlen
feature length for each feature
Definition: ms_gauden.h:94
#define GMMSUB(a, b)
Subtract GMM component b (assumed to be positive) and saturate.
int32 n_mgau
Number codebooks.
Definition: ms_gauden.h:91
Feature space linear transform structure.
Definition: acmod.h:82
#define SENSCR_SHIFT
Shift count for senone scores.
Definition: hmm.h:77
mfcc_t **** mean
mean[codebook][feature][codeword] vector
Definition: ms_gauden.h:86
feat_t * fcb
Dynamic feature computation.
Definition: acmod.h:156
cmd_ln_t * config
Configuration parameters.
Definition: ptm_mgau.h:70
uint8 *** mixw
Mixture weight distributions by feature, codeword, senone.
Definition: ptm_mgau.h:74
ptm_fast_eval_t * hist
Fast evaluation info for past frames.
Definition: ptm_mgau.h:80
int32 n_feat
Number feature streams in each codebook.
Definition: ms_gauden.h:92
ptm_fast_eval_t * f
Fast eval info for current frame.
Definition: ptm_mgau.h:81
int32 cw
Codeword index.
Definition: ptm_mgau.h:59
int32 score
Score.
Definition: ptm_mgau.h:60
ps_mgaufuncs_t * vt
vtable of mgau functions.
Definition: acmod.h:114
LOGMATH_INLINE int fast_logmath_add(logmath_t *lmath, int mlx, int mly)
Quickly log-add two negated log probabilities.
bin_mdef_t * mdef
Model definition.
Definition: acmod.h:159
bitvec_t * mgau_active
Set of active codebooks.
Definition: ptm_mgau.h:65
#define MAX_NEG_ASCR
Maximum negated acoustic score value.
int32 n_sen
Number of senones.
Definition: ptm_mgau.h:72
#define MAX_NEG_MIXW
Maximum negated mixture weight value.
Acoustic model structure.
Definition: acmod.h:148
mfcc_t **** var
like mean; diagonal covariance vector only
Definition: ms_gauden.h:87
Common code shared between SC and PTM (tied-state) models.