
Version 0.1 i

Channeling Work

Steve Powell Rob Harrop

November 17, 2010

Abstract

A short specification arising from Rob’s investigation into serving
messages on a collection of channels with a limited number of threads,
preserving ordering constraints.

ii Draft

Contents

1 Introduction 1

2 The general state of things 1
2.1 The state of the union 2

3 Work delivery 2

4 Start work 3

5 Our work is done 4

6 To begin with... 5

7 Summary 6
7.1 ...footnote . 6

Version 0.1 1

1 Introduction

The primitives in this description are Channels and items of Work .
It is assumed that work is a message transfer or acknowledgement of
some kind. It is not important. What is important is that a series of
items of Work needs to be done for a Channel and we cannot allow
two items of work to be processed for the same Channel at the same
time. So we introduce the primitive sets:

[Channel ,Work]

and with these we can describe the general state.

2 The general state of things

The basic state of the system is a collection of Channels with a se-
quence of items of work associated with each:

Pool
pool : Channel 7→ seq Work

The pool of known channels (dom pool) is partitioned into those
which are dormant , those ready for work to be done, and those which
are currently being processed (inprogress).

We define a convenience schema for each partition. This is to name
them for use in explicitly stating preservation later.

The dormant ones have no work (but we cannot impose this con-
straint without the pool – we do it later):

Dormant
dormant : P Channel

the ready ones are ordered:

Ready
ready : iseq Channel

and the rest are ‘in progress’:

InProgress
inprogress : P Channel

2 Draft

2.1 The state of the union

We can now assemble the entire system state as follows:

State
Pool
Dormant
Ready
InProgress

〈dormant , ran ready , inprogress〉 partition dom pool

∀ c : dormant • pool c = 〈〉

where we make explicit that these channel collections partition those
known (in dom pool), and can also impose the constraint that the
dormant channels have no work.

3 Work delivery

In general, as it comes in, work is added to the sequence of items
associated with a channel in the pool . However, the precise change of
state depends upon which partition the channel is in at the time.

We therefore define three ‘deliver work’ state transitions; one for
each partition. In each case different partitions change as a result.
They share the same signature, and underlying pool change, however:

DeliverWorkCommon
∆State
w? : Work
c? : Channel

c? ∈ dom pool
pool ′ = pool ⊕ {c? 7→ pool c? a 〈w?〉}

each of them changes the State, and takes an item of work and a
channel as input. In every case, the work is added to the pool .

When the channel is dormant it moves into the ready queue (and
the ‘in progress’ partition remains unchanged):

Version 0.1 3

DeliverDormant
DeliverWorkCommon
ΞInProgress

c? ∈ dormant
dormant ′ = dormant \ {c?}
ready ′ = ready a 〈c?〉

(Note that in this case the resulting sequence of work is simply 〈w?〉.)
When the channel is already ‘in progress’ the partitions stay un-

changed:

DeliverInProgress
DeliverWorkCommon
ΞInProgress
ΞDormant
ΞReady

c? ∈ inprogress

(and we need say nothing more).
When the channel is ready (in the ready queue) the partitions stay

unchanged as well:

DeliverReady
DeliverWorkCommon
ΞInProgress
ΞDormant
ΞReady

c? ∈ ran ready

(and we need say nothing more).
Since the preconditions of the Deliver schemas are disjoint, we may

combine them without introducing any further non-determinism:

DeliverWork =̂ DeliverDormant ∨ DeliverInProgress ∨ DeliverReady

4 Start work

When there is time (and available computing resources) we can start
some work. We consider only doing one piece of work at a time, though
it is easy to consider ‘batching’ work items together.

4 Draft

The operation that starts it picks a piece of work to do, and gives
the work and channel as outputs. The dormant channels are unaf-
fected, and the channel moves from ready to ‘in progress’:

StartWork
∆State
ΞDormant
c! : Channel
w ! : Work

ready 6= 〈〉
〈c!〉a ready ′ = ready
inprogress ′ = inprogress ∪ {c!}
〈w !〉a pool ′ c! = pool c!
{c!} −C pool ′ = {c!} −C pool

where the channel simply gets ‘taken’ from the front of the ready
queue; the work gets ‘taken’ from the front of the work queue for the
channel; the channel gets put in the ‘in progress’ partition and no
other channels are affected.

Notice that here, although apparently there might be no work left,
the channel is not put into the dormant partition until the current
work is completed. It is quite in order for non-dormant channels to
have no work pro tem, though we expect such a channel to be placed
in dormant eventually.

5 Our work is done

After the work is completed the channel can be taken out of ‘in
progress’. Of course, there might already be more work to do (or
not) and these cases are distinguished.

We define a ‘partial operation’ to identify the essence of work com-
pletion:

EndWorkCommon
∆State
ΞPool
c? : Channel

c? ∈ inprogress
inprogress ′ = inprogress \ {c?}
pool ′ = pool

Version 0.1 5

This only happens for channels in inprogress and this channel is always
removed from there. None of the work queues change as a result of
this transition.

If there is no more work to do, the channel becomes dormant (and
the ready queue remains unchanged):

EndWorkNoMoreToDo
EndWorkCommon
ΞReady

pool c? = 〈〉
dormant ′ = dormant ∪ {c?}

(We could have deduced the dormant relation – and, as it happens,
the pool constraint – from the core work and the fact that the ready
queue does not change.)

If there is more work to do, the channel becomes ready (though
not so ready as some already):

EndWorkMoreToDo
EndWorkCommon
ΞDormant

pool c? 6= 〈〉
ready ′ = ready a 〈c?〉

The channel is placed on the ‘end’ of the ready queue.
Should we be so inclined, since the preconditions of the two EndWork

schemas are disjoint, we can unambiguously combine them:

EndWork =̂ EndWorkMoreToDo ∨ EndWorkNoMoreToDo

6 To begin with...

After constructing this description, we note that there is no channel
creation nor deletion described, and that the initial state is not given.
This is an ideal opportunity to record our intentions in these areas.
We can even document the rules for pieces of work left over when a
channel ‘crashes’, in some way, or if the item of work ‘fails’.

We limit this brief note to talk about the initial state.
In the absence of channel creation or deletion, we will provide the

set of channels initially:

6 Draft

InitialState
State ′

cs? : P Channel

dormant ′ = cs?
pool ′ = {c : cs? • c 7→ 〈〉}

The set of channels is precisely the dormant set initially, and the pool
records no work at all. The partition constraint on State ensures that
the rest of the initial state is determined:

InitialState ` ready ′ = 〈〉 ∧ inprogress ′ = ∅

7 Summary

Essentially, this simple arrangement makes sure that pieces of work
for the same channel never overtake each other, even if there are free
servers ready to do more work at all times.

inprogress dormant

ready

deliverdeliver

deliver

start

end work

Figure 1: Channel state movements

The operations defined here can be diagrammed (see figure 1) as
transitions between three ‘states’ of a channel, corresponding to the
partitions of the dom pool collection.

This picture was constructed after the specification was written,
and seems bleedin’ obvious. ’Twas ever thus.

This document fully type-checks (with Fuzz).

7.1 ...footnote

Figure 2 is a picture of the “whiteboard” resulting from the original
discussion and from which this document was created.

Version 0.1 7

Figure 2: board marks

