next | previous | forward | backward | up | top | index | toc | Macaulay2 web site
Macaulay2Doc :: pushForward(RingMap,Module)

pushForward(RingMap,Module)

Synopsis

Description

Currently, R and S must both be polynomial rings over the same base field.

This function first checks to see whether M will be a finitely generated R-module via F. If not, an error message describing the codimension of M/(vars of S)M is given (this is equal to the dimension of R if and only if M is a finitely generated R-module.

Assuming that it is, the push forward F_*(M) is computed. This is done by first finding a presentation for M in terms of a set of elements that generates M as an S-module, and then applying the routine coimage to a map whose target is M and whose source is a free module over R.

Example: The Auslander-Buchsbaum formula

Let's illustrate the Auslander-Buchsbaum formula. First construct some rings and make a module of projective dimension 2.
i1 : R4 = ZZ/32003[a..d];
i2 : R5 = ZZ/32003[a..e];
i3 : R6 = ZZ/32003[a..f];
i4 : M = coker genericMatrix(R6,a,2,3)

o4 = cokernel | a c e |
              | b d f |

                              2
o4 : R6-module, quotient of R6
i5 : pdim M

o5 = 2
Create ring maps.
i6 : G = map(R6,R5,{a+b+c+d+e+f,b,c,d,e})

o6 = map(R6,R5,{a + b + c + d + e + f, b, c, d, e})

o6 : RingMap R6 <--- R5
i7 : F = map(R5,R4,random(R5^1, R5^{4:-1}))

o7 = map(R5,R4,{- 13408a - 7853b - 8408c + 9600d - 14965e, - 15675a - 13036b + 8812c - 1243d + 12841e, 6716a + 7014b + 11792c - 4002d - 5202e, 454a + 12654b + 565c + 10509d + 3020e})

o7 : RingMap R5 <--- R4
The module M, when thought of as an R5 or R4 module, has the same depth, but since depth M + pdim M = dim ring, the projective dimension will drop to 1, respectively 0, for these two rings.
i8 : P = pushForward(G,M)

o8 = cokernel | c -de               |
              | d bc-ad+bd+cd+d2+de |

                              2
o8 : R5-module, quotient of R5
i9 : pdim P

o9 = 1
i10 : Q = pushForward(F,P)

        3
o10 = R4

o10 : R4-module, free, degrees {0..1, 0}
i11 : pdim Q

o11 = 0

Example: generic projection of a homogeneous coordinate ring

We compute the pushforward N of the homogeneous coordinate ring M of the twisted cubic curve in P^3.
i12 : P3 = QQ[a..d];
i13 : M = comodule monomialCurveIdeal(P3,{1,2,3})

o13 = cokernel | c2-bd bc-ad b2-ac |

                               1
o13 : P3-module, quotient of P3
The result is a module with the same codimension, degree and genus as the twisted cubic, but the support is a cubic in the plane, necessarily having one node.
i14 : P2 = QQ[a,b,c];
i15 : F = map(P3,P2,random(P3^1, P3^{-1,-1,-1}))

                 9        3       10    3    5    9   2    3    3     3
o15 = map(P3,P2,{-a + b + -c + d, --a + -b + -c + -d, -a + -b + -c + --d})
                 8        2        7    8    9    8   9    2    4    10

o15 : RingMap P3 <--- P2
i16 : N = pushForward(F,M)

o16 = cokernel {0} | 19864979703787146880ab-14399986205801518560b2+11982993206598432000ac-14805698677155033480bc-16881610686591402000c2 11351416973592655360a2-5961861863522157600b2-1835432406708104160ac-3812447163333087720bc-10740869145939974400c2 185048689116281613848033655437240928225696b3-4466584860596399355747134845445102474405280b2c+470116657587772363135317780108952925383104000ac2-299985985653836255722986090110911494426391200bc2-316057774461007959582464925716951464051320000c3                                                  0                                                                                                                                                                                               |
               {1} | -20598577125524081070a+15939876841936188764b+4881554522187985925c                                                  -14273026245720574102a+12176667893577212676b-1425506081180895855c                                               734155266062031097567227543110537629381384116a2-926165446287052138251025245341685223837243752ab+347659450430512387497428461924329694227167292b2-603547379981921378469946958297695079043181220ac+159959507873350810164479074704624502147914780bc-79096446296622133434625828580780199859889775c2 2987154475452480a3-5933779241206320a2b+4147044157279800ab2-1026014644718784b3-3375911257096180a2c+3572517063623760abc-892783945801440b2c+147975856109100ac2+68509306296900bc2+977270200918875c3 |

                               2
o16 : P2-module, quotient of P2
i17 : hilbertPolynomial M

o17 = - 2*P  + 3*P
           0      1

o17 : ProjectiveHilbertPolynomial
i18 : hilbertPolynomial N

o18 = - 2*P  + 3*P
           0      1

o18 : ProjectiveHilbertPolynomial
i19 : ann N

                             3                    2                       2  
o19 = ideal(2987154475452480a  - 5933779241206320a b + 4147044157279800a*b  -
      -----------------------------------------------------------------------
                       3                    2                           
      1026014644718784b  - 3375911257096180a c + 3572517063623760a*b*c -
      -----------------------------------------------------------------------
                      2                      2                    2  
      892783945801440b c + 147975856109100a*c  + 68509306296900b*c  +
      -----------------------------------------------------------------------
                      3
      977270200918875c )

o19 : Ideal of P2
Note: these examples are from the original Macaulay script by David Eisenbud.

Caveat

The module M must be homogeneous, as must R, S, and f. If you need this function in more general situations, please write it and send it to the Macaulay2 authors, or ask them to write it!