LibDsk v1.3.8

John Elliott
April 24, 2015

Abstract

LibDsk is a library intended to give transparent access fgpffadrives and to
the “disc image files” used by emulators to represent floppedr

This library is free software, released under the GNU Lp@PL. See COPY-
ING for details.

Contents

1

Introduction

11
1.2
13
1.4

Aboutthisdocument

AboutLibDsk

What's new? e e
Terms and definitions

Supported file formats

Architecture

3.1

Logical and physicalsectors

3.1.1 DSK_GEOMETRYindetail

LibDsk Function Reference

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13

4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22

4.23
4.24
4.25
4.26
4.27
4.28
4.29
4.30
431
4.32
4.33

dsk_open: Open an existing discimage
dsk_creat: Createanewdiscimage
dsk_close: Close adriveordiscimage
dsk_dirty: Read the dirtyflag
dsk_pread, dsk_Iread: Readasector

dsk_pwrite, dsk_Iwrite: Writeasector
dsk_pcheck, dsk_Icheck: Verify sectors on disc aganeshory

dsk_pformat, dsk_Iformat: Formata disctrack
dsk_apform, dsk_alform: Automatic format
dsk_psecid, dsk_lIsecid: Read asectorID.
dsk_ptrackids, dsk_Itrackids: Identify sectors aghkr
dsk rtread: Reserved.
dsk_xread, dsk_xwrite: Low-level reading and writing.
4.13.1 dsk_xread(), dsk_xwrite(): Deleted data C e s
dsk_ltread, dsk_ptread, dsk _xtread

dsk_lseek,dsk pseeko
dsk drive_status

dsk_dirty: Has drive been writtento?

dsk_getgeom: Guess discgeometry

dg_*geom : Initialise disc geometry from boot sector .

dg_stdformat : Initialise disc geometry from a staddastk format.

dsk_* forcehead: Override disc head

dsk_* option: Set/getdriveroption
4.22.1 Filesystemdriveroptions

dsk_option_enum: Get list of driver options

dsk_* comment: Set comment for discimage
dsk_type_enum Lo
dsk_comp_enum
dsk_drvname,dsk drvdesc
dsk_compname,dsk_compdesc

dg_ps2Is,dg_Is2ps, dg_pt2lt,dg_It2pt L
dsk_strerror: Convert error code to string e e
dsk_reportfunc_set/dsk reportfunc get
dsk_set retry/dsk get retry

dsk_get_psh

4.34 Structure: DSK_FORMAT 21
4.35 LibDskerrors 21
4.36 Miscellaneous e 22
Initialisation files 22
5.1 libdskrcformat 22
5.1.1 libdskrcexample 23
5.2 Locatinglibdskrc o 24
521 WNIX e 24
522 Win32. 24
523 Winl6. 24
524 DOS 24
Reverse CP/M-FS (rcpmfs) backend 24
6.1 InUse 25
6.2 rcpmfsinitialisationfile Lo oo 25
6.3 BUGS 26
The CopyQM file format 26
7.1 Introduction 26
7.2 Header. 27
7.3 CRC . . . e 27
7.4 Imagecomment 27
75 Imagedata. 27
LibDsk under Windows 28
8.1 WINdows3.X 28
8.2 Windows4.x(95,98andME) 28
8.3 Windows NT (NT 3.x, NT 4.x, 2000, XP) without ntwdm driver . . 28
8.4 Windows 2000 and XP with ntwdmdriver 28
8.5 General comments on programming floppy access for Wiadaw. . 28
8.5.1 TheWinl6driver. 29
8.5.2 TheWin32cdriver. 29
8.5.3 TheWin32driver. 29
8.5.4 Thentwdmdriver. 29
8.5.5 OtherfloppyAPIls L. 29
86 LDSERVER 29
8.6.1 CompilingLDSERVER 29
8.6.2 USINgLDSERVER 30
8.6.3 Important Security Warning 30
8.7 LibDskandCOM 30
8.7.1 Generalpoints 30
8.7.2 Library 30
8.7.3 Geometry 31
87.4 Disk 32
8.75 IReporter 33

9 LibDsk RPC system 33
9.1 The'serial'driver 33
9.1.1 Serversfortheserialdriver. 34
9.2 The'fork'driver 34
10 Writing new drivers 35
10.1 Thedriverheader 35
10.2 Thedriversourcefile 35
10.3 Driverfunctions 36
10.3.1 dc_open. 36
10.3.2 dc creat. e 36
10.3.3 dc close. 37
1034 dc_read 37
10.3.5 dc_write 37
10.3.6 dc_format 37
10.3.7 dc_getgeom L 37
10.3.8 dc_secid 38
10.3.9 dc_xseek 38
10.3.10dc_xread,dc_xwrite 38
10.3.11dc_status 38
10.3.12dc_tread 38
10.3.13dc_xtread 39
10.3.14dc_option_enumo 39
10.3.15dc_option_set, dc_option_get 39
10.3.16dc_trackids 40
10.3.17dc_rtread 40
11 Adding new compression methods 40
11.1 Driverheader 40
11.2 Driverimplementation 40
11.3 Compressionfunctions L. 41
11.3.1 CC_Open e 41
11.3.2 cc creat 42
11.3.3 cc_commit 42
11.3.4 cc_abort e 42
12 Adding new remote transports. 42
12.1 Driverheader 42
12.2 Driverimplementation 42
12.3 Remote communication functions 43
12.3.1 rc_open 43
1232 rc_close o 44
1233 rc_call.o 44
A DQK Files 44
B LibDsk with cpmtools 45
C DSK/EDSK recording mode extension 45

1 Introduction

1.1 About this document

This document only covers LibDsk — the library — itself. Fofarmation on the ex-
ample utilities supplied with LibDsk (apriboot, dskformslkdrans, dskid, dskdump,
dskscan, dskutil and md3serial) see their respective maages.

1.2 About LibDsk

LibDsk is a library for accessing floppy drives and disc inmgransparently. It cur-
rently supports the following disc image formats:

e Raw “dd if=foo of=bar” images;

e Raw images in logical filesystem order;

e CPCEMU-format .DSK images (normal and extended);
e MYZ80-format hard drive images;

e CFl-formatdisc images, as produced by FDCOPY.COM under B@fused to
distribute some Amstrad system discs;

e ApriDisk-format disc images, used by the utility of the sanaene under DOS.
e NanoWasp-format disc images, used by the eponymous emulato

¢ IMD-format disc images, as produced by Dave Dunfield’s InfiZigk utility.

e Yaze 'ydsk’ disc images, created by the 'yaze’ and 'yazeesgllators.

e Disc images created by the Sydex imaging programs TelediskGopyQM
(read only in both cases).

e The floppy drive under Linux;

e The floppy drive under Windows. Windows support is a compéidesubject -
see section 8 below.

e The floppy drive (and hard drive partitions) under DOS.
LibDsk also supports compressed disc images in the follgfiormats:

e Squeeze (Huffman coded)

GZip (Deflate)

BZip2 (Burrows-Wheeler; support is read-only)

e TeleDisk 'advanced’ compression (LZH; support is readypahd confined to
TeleDisk disk images)

1.3 What's new?
For full details, see the file ChangelLog.

¢ A budgfix to the automatic geometry probe in the 'imd’ driveDldiscs were not
being correctly detected.

e Added a new 'imd’ driver for IMD-format disc images.

e Anew SIDES_EXTSURFACE geometry, for disc images where éutos num-
bers on side 1 follow on from side O.

¢ TeleDisk images with 'advanced’ (LZH) compression are napported.
e Added a new 'ydsk’ driver for YAZE ydsk-format disc images.

e Some disc image files include filesystem information as plitie disc image
metadata. dskid and dsktrans now display and copy thisrirdtion.

e Should now compile out of the box on FreeBSD.

e A bugfix to the rcpmfs driver should allow it to simulate a CP2Milesystem as
well as CP/M 3.

1.4 Terms and definitions

In this document, | use the wordlvLINDER to refer to a position on a floppy disc, and
TRACK to refer to the data within a cylinder on one side of the disr. &single-sided
disc, these are the same; for a double-sided disc, therevaze &s many tracks as
cylinders.

2 Supported file formats

The following disc image file formats are supported by LibDsk

“dsk” : Disc image in the DSK format used by CPCEMU. The format of 8kOile
is described in the CPCEMU documentation.

“edsk” : Disc image in the extended CPCEMU DSK format.

“

raw” : Raw disc image - as produced byd' if=/dev/£d0 of=image”. On Sys-
tems other than Linux, DOS or Windows, this is also used t@ssthe host
system’s floppy drive.

“logical” : Raw disc image in logical filesystem order. Previous versiof LibDsk
could generate such images (for example, by using the n@redated logical
option to dsktrans) but couldn’t then write them back or Ut in emulators.

“floppy” : Host system’s floppy drive (under Linux, DOS or Windows).

“int25” : Hard drive partition under DOS. Also used for the floppy dron Apricot
PCs.

“ntwdm” : Enhanced floppy support under Windows 2000 and XP, usindditi@nal
kernel-mode driver.

“myz80” : MYZ80 hard drive image, which isearlythe same as “raw” but has a 256
byte header.

[P 11

cfi” : Compressed floppy image, as produced by FDCOPY.COM unde3. S

format is described in cfi.html.

“imd” : Disc images created by Dave Dunfield’s ImageDisk utility.

“ ”

gm” : Disc images created by Sydex’s CopyQM. Write support is thiver is ex-

perimental.
“tele” : Disc images created by Sydex’s TeleDisk. This is a reag-oriver.

“nanowasp” : Discimage in the 400k Microbee format used by the NanoWasd&
tor. This is similar to “raw”, but the tracks are stored in Heatient order. LibDsk
also applies a sector skew so that the sectors are readfwiritthe logical order.
Strictly speaking, it should not do this (when libdsk is useth cpomtools, cpm-
tools is the one that does the skewing) but cpmtools canmatlbahe skewing
scheme used by the Microbee format.

“apridisk”: Disc image in the format used by the ApriDisk utility. The riat is
described in apridisk.html.

“rcpmfs”. Reverse CP/M filesystem. A directory is made to appear as & @RK.
This is an experimental system and should be approachedaution.

“remote”. Remote LibDsk server, most likely at the other end of a sénal

“ydsk”: Disc image format used by the yaze and yaze-ag CP/M emulators

3 Architecture

LibDsk is composed of a fixed core (files nam&sk* . c) and a number of drivers
(files nameddrv*.c). When you open an image or a drive (usidgk_open() or
dsk_creat()) then a driver is chosen. This driver is then used until itssed
(dsk_close()).

Each driver is identified by a name. To get a list of availalbiests, uselsk_type_enum().
To get the driver that is being used by an open DSK imagedagedrvname () or
dsk_drvdesc().

3.1 Logical and physical sectors

LibDsk has two models of disc geometry. One is as a lineayarfdogical” sectors -
for example, a 720k floppy appears as 1440 512-byte sectorbened 0 to 1439. The
other locates each sector using a (Cylinder, Head, Sedia# ¢ so on the 720k floppy
described earlier, sectors would run from (0,0,1) to (9,1,

Internally, all LibDsk drivers are written to use the CylardHead/Sector model.
For those calls which take parameters in logical sectotsDgk uses the information
in aDSK_GEOMETRY structure to convert to C/H/$SK_GEOMETRY also contains infor-
mation such as the sector size and data rate used to access aligic.

Those functions which deal with whole tracks (such as themand to format a
track) use logical tracks and (cylinder,head) pairs irtstda initialise 8DSK_GEOMETRY
structure, either:

e calldsk_getgeom() to try and detect it from the disc; or

e calldg_stdformat () to select one of the “standard” formats that LibDsk knows
about; or

e calldg_dosgeom() / dg_cpm86geom() / dg_pcwgeom() / dg_aprigeom() to
initialise it from a copy of a DOS / CP/M86 / PCW / Apricot bo@&csor; or

e Set all the members manually.

3.1.1 DSK_GEOMETRY in detail

typedef struct
{

dsk_sides_t dg_sidedness; /* This describes the logical sequence of tracks on
the disc - the order in which their host system reads thens Whi only be used
if dg_heads is greater than 1 (otherwise all the methods are equivadeat)ou
are using functions that take logical sectors or tracks aanpaters. It will be
one of:

SIDES_ALT The tracks are ordered Cylinder 0 Head 0; COH1; C1HO; C1H1;
C2HO0; C2H1 etc. This layoutis used by most PC-hosted operatistems,
including DOS and Linux. Amstrad’s 8-bit operating systeaftso use this
ordering.

SIDES_OUTBACK The tracks go out to the edge on Head 0, and then back in
on Head 1 (so Cylinder 0 Head 0 is the first track, while Cylin@i¢iead
1 is the last). This layout is used by Freek Heite's 144FEAVeadr(for
CP/M-86 on the PC) but | have not seen it elsewhere.

SIDES_QOUTOUT The tracks go out to the edge on Head 0, then out again on Head
1 (so the order goes C(last)HO, COH1, C1H1, ..., C(last)Hih)s ordering
is used by Acorn-format discs.

SIDES_EXTSURFACE The tracks are arranged in the same way as SIDES_ALT,
but if the sectors on side 0 are numbered, the sectors on side 1 are
numberech+1 - 2*n (for example, side 0 are numbered 1-9, and side 1 are
numbered 10-18). This is a new option and should be treatddoaution!

*/

dsk_pcyl_t dg_cylinders; /* The number of cylinders this disc has. Usually 40
or 80. */

dsk_phead_t dg_heads; /* The number of heads (sides) the disc has. Usually 1 or
2.

dsk_psect_t dg_sectors; /* The number of sectors per track. */

dsk_psect_t dg_secbase; /* The first physical sector number. Most systems start

numbering their sectors at 1; Acorn systems start at 0, anstraich CPCs start
at 65 or 193. */

size_t dg_secsize; [* Sector size in bytes. Note that several drivers rely os thi
being a power of 2. */

dsk_rate_t dg_datarate; /* Data rate. This will be one of:

RATE_HD High-density disc (1.4Mb or 1.2Mb)

RATE_DD Double-density disc in 1.2Mb drive (ie, 360k disc in 1.2Mlive)
RATE_SD Double-density disc in 1.4Mb or 720k drive

RATE_ED Extra-density disc (2.8Mb) */

dsk_gap_t dg_rwgap; /* Read/write gap length */
dsk_gap_t dg_fmtgap; /* Format gap length */

int dg_fm; /* Set to nonzero to use FM (single density) recording modet &l
PC floppy controllers support this mode; the National Sendcetor PC87306
and the Future Domain TMC series SCSI controllers can at tead FM discs.
The BBC Micro used FM recording for its 100k and 200k DFS fotgnalhe
Windows / DOS floppy drivers do not support FM recording. */

int dg_nomulti; /* Set to nonzero to disable multitrack mode. This only afec
attempts to read normal data from tracks containing delkdé¢al (or vice versa).
*/

int dg_noskip; /* Setto nonzero to disable skipping deleted data when heayc
for non-deleted data (or vice versa). */

} DSK_GEOMETRY;

4 LibDsk Function Reference

4.1 dsk_open: Open an existing disc image

dsk_err_t dsk_open(DSK_PDRIVER *self, const char *filename, const char *type, const c
Enter with:

e “self”is the address of a DSK_PDRIVER variable (treat it dmadle to a drive
/ disc file). On return, the variable will be non-null (if th@eration succeeded)
or null (if the operation failed).

¢ “filename” is the name of the disc image file. On DOS and Windd&s and
“B:” refer to the two floppy drives. On Apricot MS-DOS, “0:” ar'1:” refer to
the floppy drives.

e “type”is NULL to detect the disc image format automaticatly the name of a
LibDsk driver to force that driver to be used. Sk _type_enum() below.

e “compress” is NULL to auto-detect compressed files, or thmaaf a LibDsk
compression scheme. Ségk_comp_enum().

Returns: Adsk_err_t, which will be 0 ODSK_ERR_OK) if successful, or a negative
integer if failed. Seelsk_strerror (). The erroDSK_ERR_NOTME means either that
no driver was able to open the disc / disc image (if “type” wddLN) or that the
requested driver could not open the file (if “type” was not NLyL

Standard LibDsk drivers are listed in section 2.

Compression schemes are:

“ ”

sq” : Huffman (squeezed). The reason for the inclusion of thitesy is to support
.DQK images (see appendix A).
“gz” : GZip (deflate). This will only be present if libdsk was builith zlib support.

“bz2" : BZip2 (Burrows-Wheeler compression). This support igently read-only,
and will only be present if LibDsk was built with bzlib suppor

4.2 dsk_creat: Create a new disc image

dsk_err_t dsk_creat (DSK_PDRIVER *self, const char *filename, const char *type)

In the case of floppy drives, this acts exactlydag_open (). For image files, the file
will be deleted and recreated. Parameters and results doe ask_open (), except
that “type” cannot be NULL (it must specify the type of discdge to be created) and
if “compress” is NULL, it means that the file being created@dmot be compressed.

4.3 dsk_close: Close a drive or disc image
dsk_err_t dsk_close(DSK_PDRIVER *self)

Pass the address of an opaque pointer returneddedmopen () / dsk_creat (). On
return, the drive will have been closed and the pointer skifibl.

4.4 dsk_dirty: Read the dirty flag
int dsk_dirty(DSK_PDRIVER self)

This function returns non-zero if the disc has been modifiecksit was inserted into
the drive, and zero if it has not been modified.

4.5 dsk_pread, dsk_lread : Read a sector

dsk_err_t dsk_pread(DSK_PDRIVER self, const DSK_GEOMETRY *geom, void *buf, dsk_pcyl_t
dsk_err_t dsk_lread(DSK_PDRIVER self, const DSK_GEOMETRY *geom, void *buf, dsk_lsect_

These functions read a single sector from the disc. Therenaref them, depending
on whether you are using logical or physical sector addsesse
Enter with:

e “self” is a handle to an open drive / image file.
e “geom” points to the geometry for the drive.
¢ “buf” is the buffer into which data will be loaded.

e “cylinder”, “head” and “sector” {sk_pread) or “sector” dsk_lread) give the
location of the sector.

Returns:
e If successful, DSK_ERR_OK. Otherwise, a negative DSK_ERRilue.
o If the driver cannot read sectors, DSK_ERR_NOTIMPL will leturned.

10

4.6 dsk_pwrite, dsk_Iwrite: Write a sector

dsk_err_t dsk_pwrite(DSK_PDRIVER self, const DSK_GEOMETRY *geom, const void *buf, dsk
dsk_err_t dsk_lwrite(DSK_PDRIVER self, const DSK_GEOMETRY *geom, const void *buf, dsk

As dsk_pread/ dsk_lIread, but write their buffers to disbheathan reading them from
disc. If the driver cannot write sectors, DSK_ERR_NOTIMPIL e returned.

4.7 dsk_pcheck, dsk_Icheck: Verify sectors on disc againstem-
ory

dsk_err_t dsk_pcheck(DSK_PDRIVER self, const DSK_GEOMETRY *geom, const void *buf, dsk
dsk_err_t dsk_lcheck(DSK_PDRIVER self, const DSK_GEOMETRY *geom, const void *buf, dsk

Asdsk_pread/dsk_lread, but rather than reading their buffers from disc, they com-
pare the contents of their buffers with the data already enlibc. If the data match, the
functionsreturn DSK_ERR_OK. If there is a mismatch, theymeDSK_ERR_MISMATCH.
In case of error, other DSK_ERR_* values are returned. Ifditieer cannot read sec-
tors, DSK_ERR_NOTIMPL will be returned.

4.8 dsk_pformat, dsk_lformat: Format a disc track

dsk_err_t dsk_pformat (DSK_PDRIVER self, DSK_GEOMETRY *geom, dsk_pcyl_t cylinder, dsk_
dsk_err_t dsk_lformat (DSK_PDRIVER self, DSK_GEOMETRY *geom, dsk_ltrack_t track, const

Enter with:
e “self” is a handle to an open drive / image file.

e “geom” points to the geometry for the drive. The formatterymaodify this if
(for example) it’s asked to format track 41 of a 40-track driv

e “cylinder”/“head” (dsk_pformat) or “track” (dsk_1format) give the location
of the track to format.

o “format” should be an array ofgeom->dg_sectors) DSK_FORMAT struc-
tures. These structures must contain sector headers fivattiebeing formatted.
For example, to format the first track of a 720k disc, you wqudds in an array
of 9 such structures: {0, 0, 1,512},{0,0,2,512,}...,{0,9,512 }

o “filler” should be the filler byte to use. Currently the Win3ger ignores this
parameter. If the driver cannot format tracks, DSK_ERR_INHL will be
returned.

Note that when formatting a .DSK file that has more than onel hg@u must format
cylinder O for each head before formatting other cylinders.

11

4.9 dsk_apform, dsk_alform: Automatic format

dsk_err_t dsk_apform(DSK_PDRIVER self, const DSK_GEOMETRY *geom, dsk_pcyl_t cylinder,
dsk_err_t dsk_alform(DSK_PDRIVER self, const DSK_GEOMETRY *geom, dsk_ltrack_t track,

These function calls behave ask_pformat () anddsk_lformat () above, except
that the sector headers are automatically generated. d¥es $ime and trouble setting
up sector headers on discs with standard layouts such asB@8,or Linux floppies.
If the driver cannot format tracks, DSK_ERR_NOTIMPL will beturned.

4.10 dsk_psecid, dsk_Isecid: Read a sector ID.

dsk_err_t dsk_psecid (DSK_PDRIVER self, const DSK_GEOMETRY *geom, dsk_pcyl_t cylinder,
dsk_err_t dsk_lsecid (DSK_PDRIVER self, const DSK_GEOMETRY *geom, dsk_ltrack_t track,

Read a sector ID from the given track. This can be used to doolgiscs with oddly-
numbered sectors (eg, numbered 65-74). Enter with:

e “self” is a handle to an open drive / image file.
e “geom” points to the geometry for the drive.

e “cylinder”/“head” (dsk_psecid) or “track” (dsk_lsecid) give the location of
the track to read the sector from.

e “result” points to an uninitialisedSK_FORMAT structure.
On return:

o |f successful, the buffer at “result” will be initialised thi the sector header
found, and DSK_ERR_OK will be returned.

e If the driver cannot provide this functionality (for exareplthe Win32 driver
under NT), DSK_ERR_NOTIMPL will be returned.

Note that the DOS, Win16 and Win32 (under Win9x) drivers iempént a limited ver-
sion of this call, which will work on normal DOS / CP/M86 / PCWisds and CPC
discs. However it will not be usable for other purposes.

4.11 dsk_ptrackids, dsk_Itrackids: Identify sectors on tack.

dsk_err_t dsk_ptrackids(DSK_PDRIVER self, const DSK_GEOMETRY *geom, dsk_pcyl_t cylind
dsk_err_t dsk_ltrackids(DSK_PDRIVER self, const DSK_GEOMETRY *geom, dsk_ltrack_t trac

These functions are intended to read all the sector IDs framack, in order, and
(preferably) starting at the index hole. If they succeeelsult’ will point at an array
of DSK_FORMAT structures describing the sectors found.sTrray will have been
allocated with dsk_malloc() and should be freed with dske().

12

4.12 dsk rtread: Reserved.

dsk_err_t dsk_rtread(DSK_PDRIVER self, const DSK_GEOMETRY *geom, void *buf, dsk_pcyl

This function is reserved for future expansion. The intemis to use it for diagnos-
tic read commands (such as reading the raw bits from a traClyjrently it returns
DSK_ERR_NOTIMPL.

4.13 dsk_xread, dsk_xwrite: Low-level reading and writing

dsk_err_t dsk_xread(DSK_PDRIVER self, const DSK_GEOMETRY *geom, void *buf, dsk_pcyl_t
dsk_err_t dsk_xwrite(DSK_PDRIVER self, const DSK_GEOMETRY *geom, const void *buf, dsk

dsk_xread() and dsk_xwrite() are extended versions ofgglad() and dsk_pwrite().
They allow the caller to read/write sectors whose sectorifierd from the physical
location of the sector, or to read/write deleted data.. Tdyirider” and “head” argu-
ments specify where to look; the “cyl_expected” and “heageeted” are the values
to search for in the sector header.

These functions are only supported by the CPCEMU drived, thex floppy driver
and the NTWDM floppy driver. Other drivers will return DSK_RRNOTIMPL. Un-
less you are emulating a floppy controller, or you need to déses that contain deleted
data or misnumbered sectors, it should not be necessaril these functions.

4.13.1 dsk_xread(), dsk_xwrite(): Deleted data

The “deleted” argument is used if you want to read or writet@mscthat have been
marked as deleted. ldsk_xwrite (), this is a simple value; pass 0 to write normal
data, or 1 to write deleted data. d’sk_xread (), pass the address of an integer con-
taining O (read normal data) or 1 (read deleted data). Ongtte integer will contain:

¢ If the requested data type was read: O
o If the other data type was read: 1
¢ If the command failed: Value is meaningless.

PassingiULL acts the same as passing a pointer to 0.
The opposite type of data will only be read if you gebm->dg_noskipto nonzero.
Some examples:

| geom->dg_noskip deleted]| Data on disc]| Results | *deleted becomes
0 >0 Normal DSK_ERR_OK 0
0 >0 Deleted DSK_ERR_NODATA ??
0 >1 Deleted DSK_ERR_NODATA ??
1 >0 Normal DSK_ERR_OK 0
1 >0 Deleted DSK_ERR_OK 1
1 ->1 Normal DSK_ERR_OK 1
1 >1 Deleted DSK_ERR_OK 0

13

4.14 dsk_ltread, dsk_ptread, dsk xtread

dsk_err_t dsk_ltread (DSK_PDRIVER self, const DSK_GEOMETRY *geom, void *buf, dsk_ltrac
dsk_err_t dsk_ptread (DSK_PDRIVER self, const DSK_GEOMETRY *geom, void *buf, dsk_pcyl_
dsk_err_t dsk_xtread (DSK_PDRIVER self, const DSK_GEOMETRY *geom, void *buf, dsk_pcyl_

These functions read a track from the disc, using the FDCEAR TRACK” com-
mand. There are three of them - logical, physical and ex:ptgsical.

If the driver does not support this functionality, LibDsklMdttempt to simulate it
using multiple sector reads.

Enter with:

e “self” is a handle to an open drive / image file.
e “geom” points to the geometry for the drive.
e “buf”is the buffer into which data will be loaded.

e “cylinder” and “head” @sk_ptread, dsk_xtread) or “track” (dsk_ltread)
give the location of the track to read.

e (dsk_xtread) “cyl_expected” and “head_expected” are used as the vatues
search for in the sector headers.

Returns:
e If successful, DSK_ERR_OK. Otherwise, a negative DSK_ERRlue.
e (dsk_xtread() only) If the driver does not support extended sector reaitesy

then DSK_ERR_NOTIMPL will be returned.

4.15 dsk_Iseek, dsk_pseek
dsk_err_t dsk_lseek (DSK_PDRIVER self, const DSK_GEOMETRY *geom, dsk_ltrack_t track)
dsk_err_t dsk_pseek (DSK_PDRIVER self, const DSK_GEOMETRY *geom, dsk_pcyl_t cylinder,

Seek to a given cylinder. Only the CPCEMU driver, the Linwpfig driver and the
NTWDM floppy driver support this; other drivers return DSKRE_NOTIMPL. You
should not normally need to call these functions. They haentprovided to support
programs that emulate a uPD765A controller.

4.16 dsk_drive_status

dsk_err_t dsk_drive_status(DSK_PDRIVER self, const DSK_GEOMETRY *geom, dsk_phead_t he

Get the drive’s status (ready, read-only etc.). The bytsuit& will have one or more
of the following bits set:

DSK_ST3_FAULT: Drive fault
DSK_ST3 RO: Read-only

14

DSK_ST3_READY: Ready
DSK_ST3_TRACKO: Head is over track O
DSK_ST3 DSDRIVE: Drive is double-sided

DSK_ST3 HEADZ1: Current head is head 1, not head 0. Usually this just depamds o
the value of the “head” parameter to this function.

Which bits will be “live” depends on which driver is in use,thithe most trustwor-
thy will be DSK_ST3_READY and DSK_ST3_RO. This function Milever return
DSK_ERR_NOTIMPL; if the facility is not provided by the day, a default version
will be used.

4.17 dsk_dirty: Has drive been written to?

int dsk_dirty(DSK_PDRIVER self);

This returns zero if the disc has not been written to sinceai wpened, nonzero if it
has.

4.18 dsk_getgeom: Guess disc geometry

dsk_err_t dsk_getgeom(DSK_PDRIVER self, DSK_GEOMETRY *geom)

This attempts to determine the geometry of a disc (numbeylofders, tracks, sectors
etc.) by loading the boot sector. It understands DOS, ApriC®/M-86 and PCW
boot sectors. If the geometry could be guessed, then “gedthbevinitialised and
DSK_ERR_OKwill be returned. If no guess could be made, th8K DERR_BADFMT
will be returned. Other values will result if the disc coulot e read.

Some drivers (in particular the MYZ80 driver, and the Win3®&er under NT) only
support certain fixed disc geometries. In this case, the gegmeturned will reflect
what the driver can use, rather than what the boot sector says

4.19 dg_*geom : Initialise disc geometry from boot sector

dsk_err_t dg_dosgeom(DSK_GEOMETRY *self, const unsigned char *bootsect)
dsk_err_t dg_pcwgeom(DSK_GEOMETRY *self, const unsigned char *bootsect)
dsk_err_t dg_cpm86geom(DSK_GEOMETRY *self, const unsigned char *bootsect)
dsk_err_t dg_aprigeom(DSK_GEOMETRY *self, const unsigned char *bootsect)

These functions are used kdgk_getgeom(), but can also be called independently.
Enter them with:

e “self” is the structure to initialise;
e “bootsect” is the boot sector to initialise the structu@ntr.

Returns DSK_ERR_BADFMT if the sector does not contain salit disc specifica-
tion, or DSK_ERR_OK otherwise.

dg_dosgeomwill check for a PC-DOS boot sector.

15

dg_pcwgeomwill check for an Amstrad PCW boot sector.
dg_cpm86geomwill check for a CP/M-86 boot sector.

dg_aprigeom will check for an Apricot DOS boot sector.

4.20 dg_stdformat: Initialise disc geometry from a standad LibDsk
format.

dsk_err_t dg_stdformat (DSK_GEOMETRY *self, dsk_format_t formatid, dsk_cchar_t *fname,

Initialises a DSK_GEOMETRY structure with one of the stamdéormats LibDsk
knows about. Formats are:

FMT_180K: 180k, 9 512 byte sectors, 40 tracks, 1 side
FMT_200K: 200k, 10 512 byte sectors, 40 tracks, 1 side

FMT_CPCSYS: Amstrad CPC system format - as FMT_180K, but physical sector
are numbered 65-73

FMT_CPCDATA: Amstrad CPC data format - as FMT_180K, but physical sectors
are numbered 193-201

FMT_720K: 720k, 9 512 byte sectors, 80 tracks, 2 sides
FMT_800K: 800k, 10 512 byte sectors, 80 tracks, 2 sides
FMT_1440K: 1.4M, 18 512 byte sectors, 80 tracks, 2 sides
FMT_160K: 160Kk, 8 512 byte sectors, 40 tracks, 1 side
FMT_320K: As FMT_160K, but 2 sides

FMT_360K: As FMT_180K, but 2 sides

FMT_720F: As FMT_720K, but the physical/logical sector mapping is t‘and-
back” rather than “alternate sides”. See section 3.1.1dtamits.

FMT_1200F: As FMT_720F, but with 15 sectors

FMT_1440F: As FMT_720F, but with 18 sectors

FMT_ACORN160: Acorn 40 track single sided 160k (used by ADFS 'S’ format)
FMT_ACORN320: Acorn 80 track single sided 320k (used by ADFS 'M’ format)
FMT_ACORNG640: Acorn 80 track double sided 640k (used by ADFS 'L’ format)
FMT_ACORNBS800: Acorn 80 track double sided 800k (used by ADFS 'D’ and 'E’)
FMT_ACORN1600: Acorn 80 track high density 1600k (used by ADFS 'F’ format)
FMT_BBC100 BBC micro 40 track single sided 100k (using FM encoding)
FMT_BBC200 BBC micro 80 track single sided 200k (using FM encoding)

16

FMT_MBEE400 Microbee 40 track double sided 400k
FMT_MGT800 MGT 80 track double sided 800k (used by MGT +D and Sam Coupé).

If the “fname” is not NULL, it will be pointed at a short namerfthe format (suitable
for use as a program option; seeols/dskform. c).

If the “fdesc” is not NULL, it will be pointed at a descriptiatring for the format.
With these two, it's possible to enumerate geometries stppdy the library without
keeping a separate list in your program - seels/formnames.c for example code
that does this.

If additional formats have been specified in the libdskrc(Bkection 5.1), they will
be returned by this function, using format numbers staréihthe last builtin format
plus 1.

4.21 dsk _* forcehead: Override disc head

dsk_err_t dsk_set_forcehead (DSK_PDRIVER self, int force)
dsk_err_t dsk_get_forcehead (DSK_PDRIVER self, int *force)

(This function is deprecated; it is equivalent to dsk_sptiom() / dsk_get_option()
with “HEAD” as the option name).

Forces the driver to ignore the head number passed to it araysluse either side
0 or side 1 of the disc. This is used to read discs recorded & RCPC / Spectrum+3
add-on 3.5" drives. Instead of the system software beingraromed to use both sides
of the disc, a switch on the drive was used to set which sidebegy used. Thus discs
would end up with both sides saying they were head 0.

Anyway, when using dsk_set_forcehead, pass:

-1: Normal - the head passed as a parameter to other calls is used.
0: Always use side 0.

1: Always use side 1.

4.22 dsk_* option: Set/get driver option

dsk_err_t dsk_set_option(DSK_PDRIVER self, const char *name, int value)
dsk_err_t dsk_get_option(DSK_PDRIVER self, const char *name, int *value)

Sets or gets a driver-specific numeric option.

The “name” field is the option name. If the selected driversdoet support the
appropriate option, then the error DSK_ERR_BADOPT will baurned. If the option
is valid but the value requested is not, DSK_ERR_BADVAL v# returned.

The following driver options are supported by the Linux andWDM floppy
drivers:

HEAD Force the drive always to use one or other side of the disorigg the disc
geometry. Valid values are 0 or 1 to force one or other siddefdisc, -1 to
allow either.

17

DOUBLESTEP To support a 48tpi disc in a 96tpi drive, double all cylindantbers.
Valid values are 1 (enable) or O (disable).

STO/ST1/ST2/ST3These are the values of the floppy controller’s 4 status tergis
returned by the last operation. They cannot be changedreaty

The 'remote’ driver supports the following option (plus amgtions that the remote
driver supports):

REMOTE:TESTING This disables an optimisation in the remote driver, so that i
sends method calls to the remote server even if it has beed ask to. The
purpose of this is to ensure that all calls to the remote drasult in RPC packets
being sent.

4.22.1 Filesystem driver options

It is possible that as part of its geometry probe, LibDsk Wwalve detected a CP/M
or DOS filesystem on a disc image. Alternatively, a disc imagg contain filesys-
tem metadata (for example, the YAZE ydsk and RCPMFS drivetls bontain CP/M

filesystem parameters). These parameters appear as dehi@ns) prefixed with the
name FS:. When making a copy, dsktrans enumerates the dgtiens on the source
disc image and sets them to the same values on the destiivatige. This is neces-
sary to ensure that (for example) when one YDSK is copied tdham, its filesystem
parameters are transferred. The current filesystem opdigmzorted by LibDsk are:

FS:CP/M:BSH Block shift - 3 => 1k, 4 => 2k, 5 => 4k...
FS:CP/M:BLM Block mask - (block size /128) - 1

FS:CP/M:EXM Extent mask - roughly, how much does a directory entry coér?
=> 16k, 1 => 32k, 3 => 64k...)

FS:CP/M:DSM Number of data and directory blocks, minus 1
FS:CP/M:DRM Number of directory entries, minus 1

FS:CP/M:ALO Allocation bitmap of directory blocks (first 8 blocks)
FS:CP/M:AL1 Allocation bitmap of directory blocks (second 8 blocks)

FS:CP/M:CKS Checksum vector size (normally (FS:CP/M:DRM + 1) / 4); can be
0x8000 for a fixed disc

FS:CP/M:OFF Number of boot tracks

FS:CP/M:VERSION Filesystem version (-2 (1ISX), 2 (CP/M 2) or 3 (CP/M 3). This
is only supported by the 'rcpmfs’ driver.)

FS:FAT:SECCLUS Number of sectors per cluster
FS:FAT:RESERVED Number of reserved sectors
FS:FAT:FATCOPIES Number of FAT copies
FS:FAT:DIRENTRIES Number of root directory entries

18

FS:FAT:MEDIABYTE Media byte (usually the first byte of the FAT)

FS:FAT:SECFAT Number of sectors per FAT

Note that it is theoretically possible for a disc to have FSM and FS:FAT informa-
tion - for example, a CP/M filesystem saved in a disc image dlsd contains FAT
metadata, or vice versa.

4.23 dsk_option_enum: Get list of driver options

dsk_err_t dsk_option_enum(DSK_PDRIVER self, int idx, char **optname)

If “idx” is in the range 0 -> number of driver options, (*optme) is set to the name of
the appropriate driver option. If not, (*optname) is set tdINL.

4.24 dsk * comment: Set comment for disc image

dsk_err_t dsk_set_comment (DSK_PDRIVER self, const char *comment)
dsk_err_t dsk_get_comment (DSK_PDRIVER self, char **comment)

Used to get or set the comment (if any) for the current disan@ents are only sup-
ported by the ApriDisk format; you can set a comment for offlertypes but it will
not be saved. The pointer passed or returned may be NULL (mgaxo comment”).

4.25 dsk_type enum
dsk_err_t dsk_type_enum(int index, char **drvname)

If “index” is in the range 0 -> number of LibDsk driversdrvname) is set to the short
name for that driver (eg: “myz80” or “raw”). If not, (*drvna@) is set talULL.

4.26 dsk_comp_enum
dsk_err_t dsk_comp_enum(int index, char **compname)

As dsk_type_enum(), but lists supported compression schemes.

4.27 dsk_drvname, dsk_drvdesc

const char *dsk_drvname (DSK_PDRIVER self)
const char *dsk_drvdesc(DSK_PDRIVER self)

Returns the driver name (eg: “myz80”) or description (eg “EB0 hard drive driver”)
for an open disc image.

4.28 dsk_compname, dsk_compdesc

const char *dsk_compname (DSK_PDRIVER self);
const char *dsk_compdesc(DSK_PDRIVER self);

Returns the compression system name (eg: “gz”; NULL if tree dinage isn’t com-
pressed) or description (eg: “GZip compressed”) for an afisnimage.

19

4.29 dg_ps2ls, dg_ls2ps, dg_pt2lt, dg_It2pt

Convert between logical sectors and physical cylindedfssstor addresses. Normally
these functions are called internally and you don’t needstothem.

dsk_err_t dg_ps2ls(const DSK_GEOMETRY *self, dsk_pcyl_t cyl, dsk_phead_t head, dsk_ps

Converts physical C/H/S to logical sector.

dsk_err_t dg_ls2ps(const DSK_GEOMETRY *self, dsk_lsect_t logical, dsk_pcyl_t *cyl, ds

Converts logical sector to physical C/H/S.

dsk_err_t dg_pt2lt(const DSK_GEOMETRY *self, dsk_pcyl_t cyl, dsk_phead_t head, dsk_lt

Converts physical C/H to logical track.

dsk_err_t dg_lt2pt(const DSK_GEOMETRY *self, dsk_ltrack_t logical, dsk_pcyl_t *cyl, d

Converts logical track to physical C/H.

4.30 dsk_strerror: Convert error code to string
char *dsk_strerror(dsk_err_t err)

Converts an error code returned by one of the other LibDsktfans into a printable
string.

4.31 dsk_reportfunc_set / dsk_reportfunc_get

void dsk_reportfunc_set (DSK_REPORTFUNC report, DSK_REPORTEND repend);
void dsk_reportfunc_get (DSK_REPORTFUNC *report, DSK_REPORTEND *repend) ;

Used to set callbacks from LibDsk to your own code, for LibBsklisplay messages
during processing that may take time. The code could be usedttthe text on the
status line of your program window, for example.

typedef void (*DSK_REPORTFUNC) (const char *message);
typedef void (*DSK_REPORTEND) (void) ;

The first function you provide will be called when LibDsk wartb display a mes-
sage (such as “Decompressing...”). The second will beatallgen the processing has
finished.

4.32 dsk_set retry / dsk_get_retry

dsk_err_t dsk_set_retry(DSK_PDRIVER self, unsigned int count);
dsk_err_t dsk_get_retry(DSK_PDRIVER self, unsigned int *count);

Sets the number of times that a failed read, write, check iwndb operation will be
attempted. 1 means “only try once, do not retry”.

20

4.33 dsk _get psh

unsigned char dsk_get_psh(size_t sector_size)

Converts a sector size into the sector shift used by the uB®€6ntroller (eg: 128 ->
0, 256 -> 1, 512 -> 2 etc.) You should not need to use this. Therse operation is:
sectorsize = (128 << psh).

4.34 Structure: DSK_FORMAT

This structure is used to represent a sector header. It hasfembers:
fmt_cylinder: Cylinder number.

fmt_head: Head number.

fmt_sector: Sector number.

fmt_secsize: Sector size in bytes.

4.35 LibDsk errors
DSK_ERR_OK: No error.

DSK_ERR_BADPTR: A null or otherwise invalid pointer was passed to a LibDsk
routine.

DSK_ERR_DIVZERO: Division by zero: For example, a DSK_GEOMETRY is set
to have zero sectors.

DSK_ERR_BADPARM: Bad parameter (eg: if a DSK_GEOMETRY is set up with
dg_cylinders = 40, trying to convert a sector in cylinder 65 to a logicalteec
will give this error).

DSK_ERR_NODRVR: Requested driver not found &k _open () / dsk_creat ().
DSK_ERR_NOTME: Disc image could not be opened by requested driver.
DSK_ERR_SYSERR: System call failed. errno holds the reason.
DSK_ERR_NOMEM: malloc() failed to allocate memory.

DSK_ERR_NOTIMPL: Functionis notimplemented (eg, this driver doesn’t suppor
dsk_xread()).

DSK_ERR_MISMATCH: Indsk_lcheck()/dsk_pcheck(),sectors didn’'tmatch.
DSK_ERR_NOTRDY: Drive is not ready.

DSK_ERR_RDONLY: Disc is read-only.

DSK_ERR_SEEKFAIL: Seek fail.

DSK_ERR_DATAERR: Data error.

DSK_ERR_NODATA: Sector ID found, but not sector data.

21

DSK_ERR_NOADDR: Sector not found at all.
DSK_ERR_BADFMT: Not a valid format.

DSK_ERR_CHANGED: Disc has been changed unexpectedly.
DSK_ERR_ECHECK: Equipment check.

DSK_ERR_OVERRUN: Overrun.

DSK_ERR_ACCESS: Access denied.

DSK_ERR_CTRLR: Controller failed.

DSK_ERR_COMPRESS: Compressed file is corrupt.
DSK_ERR_RPC: Errorin remote procedure call.
DSK_ERR_BADOPT: Driver does not support the requested option.

DSK_ERR_BADVAL: Driver does support the requested option, but the passad val
is out of range.

DSK_ERR_UNKNOWN: Unknown error

4.36 Miscellaneous

LIBDSK_VERSION is a macro, defined as a string containinglithiary version - eg
“1.0.0”

5 Initialisation files

In addition to its built-in library of formats, LibDsk cansa load formats from one or
two external files - a systemwide file (libdskrc) and a usexesix file (.libdskrc). The
rules for how these files are found differ from platform totfdam.

5.1 libdskrc format

The file format is similar to a Windows .INI file. Each formatsscribed in a section,
which starts with the format name in square brackets (formaates may not start with a
hyphen). After the format name, there are a number of lindseform variable=value.

Anything after a semicolon or hash character is treated asrement and ignored.
Blank lines are also ignored.

For each geometry, the entries listed below can be predemit &ll the values are
present, LibDsk will use default values from its "pcw180irfmt. As you can see, they
correspond to members of the DSK_GEOMETRY structure.

description=DESC The description of the format as shown by (for example) dskfo
—help.

22

sidess=TREATMENT How a double-sided disk is handled. This can eitheralie
(sides alternate — used by most PC-hosted operating systautisack(use side
0 tracks 0-79, then side 1 tracks 79-0 — used by 144FEAT CPéksjlioutout
(use side 0 tracks 0-79, then side 1 tracks 0-79 — used by scor@ formats) or
extsurfacgsectors on side 0 are numbered,lsectors on side 1 are numbered
n+1 - n*2). If the disk is single-sided, this parameter can be ceitt

cylinders=COUNT Sets the number of cylinders (usually 40 or 80).
heads=COUNT Sets the number of heads (usually 1 or 2 for single- or douidied).
sectors=COUNT Sets the number of sectors per track.

secbase=NUMBER Sets the first sector number on a track. Usually 1; some Acorn
formats use 0.

secsize=COUNT Sets the size of a sector in bytes. This should be a power of 2.

datarate=VALUE Sets the rate at which the disk should be accessed. This isfone
HD, DD, SD or ED.

rwgap=VALUE Sets the read/write gap.

fmtgap=VALUE Sets the format gap.

fm=Y or N Sets the recording mode - Y for FM, N for MFM.
multitrack=Y or N Sets multitrack mode.

skipdeleted=Y or N Sets whether to skip deleted data.

5.1.1 libdskrc example

; This is FMT_800K as a libdskrc entry

[xcf2dd]
Description = 800k XCF2DD format
Sides = Alt
Cylinders = 80
Heads = 2
Sectors = 10
SecBase = 1
SecSize = 512
DataRate = SD
RWGap = 12
FmtGap = 23
[xcf2]

Description = 200k XCF2 format
Cylinders = 40

... etc.
The supplied libdskrc.sample file contains libdskrc-formefinitions of all the
built-in disk formats.

23

5.2 Locating libdskrc
5.2.1 WNIX

The systemwide file is located at ${datadir}/LibDsk/libdsk The ${datadir} is usu-
ally /usr/local/share; you can change it with the —datadirprefix arguments to the
configure script.

The user-specific file is $(HOME)/ libdskrc.
5.2.2 Win32

The systemwide file is in the path specified at
HKEY_LOCAL_MACHINE\Software\jce@seasip\LibDsk\ShareDir

If this reqistry key is not found, LibDsk finds the path of theogram that called it
(using GetModuleFileName()), and then uses “/...prograth p/share/libdskrc”.
The user-specific file is in the path specified at

HKEY_CURRENT_USER\Software\jce@seasip\LibDsk\HomeDir

If this registry key is not present, the user’s “My Documénlisectory is used. Either
way, the file is called .libdskrc.

5.2.3 Winl6

The systemwide file is found from the location of the callimggram using GetMod-
uleFileName(). There is no user-specific file.

5.2.4 DOS

The systemwide file is only searched for if the LIBDSK envimgent variable is set; if
it is set, it is assumed to be the name of the directory coimtgiibdskrc. There is no
user-specific file.

6 Reverse CP/M-FS (rcpmfs) backend

The rcpmfs backend is designed to present a host directayeed/write CP/M disk
image. This has a number of uses:

e You could construct a CP/M disk image using dsktrdinsctory filename

e Conversely, you could extract the files from a CP/M disk imagieg dsktrans
filename directory

e ltis possible for a CP/M emulator running a genuine copy o\C#® use LibDsk
to access files on the host system, without altering the BDO&stalling addi-
tional drivers.

rcomfs does not work with systems that only support “8.3'hfat filenames; it also
needs a system call that can set the size of a file (such asatafhander Wix). It
therefore remains unimplemented in the DOS and Win16 vessibthe library.

24

6.1 InUse

To use an rcpmfs directory in LibDsk, pass a directory narstead of a filename. Files
in the directory which match CP/M naming conventions (8 énfiimes) will appear in
the emulated disk image; if there are more files than will fithe emulated disk,
LibDsk will stop when it reaches one that doesn't fit. Undem@éws, the ’'short
filename’ is used, so files with names not matching CP/M cotwes may also be
mapped with names like README~1.HTM.

CP/M has 16 user areas (some variants support 32; rcpmfsidgeand files with
the same name can existin each area. rcpmfs representsmaseeareas by prepend-
ing “nn..” to the filename; so if a CP/M program created a filkechEXAMPLE.DAT
in user 4, this would be saved as “04..example.dat” in theetlpthg directory. The
double dot ensures that the resulting flename is not a vd#iMhame, and therefore
won't conflict with any file in user 0.

rcpmfs can behave as a CP/M 2 or CP/M 3 filesystem. If the Jatteonstructs a
disc label (based on the name of the directory) and turns taftoae stamping. Update
and access stamps are used, because they map nicely tatle€) system call. It can
also emulate the filesystem used by the ISX emulator, whiotestfile sizes slightly
differently.

6.2 rcpmfs initialisation file

For a directory to be usable by rcpmfs, it should contain acfiléed .libdsk.ini describ-
ing the format to use. This file is in INI format, similar todibkrc (section 5.1). It must
contain only one section: [RCPMFS]. Within that sectior, thllowing variables may
be present:

BlockSize Size of a CP/M data block. Must be a power of 2, and at least.1®8%re
are more than 255 blocks in the CP/M filesystem, this must beaat 2048.

DirBlocks Number of blocks containing the CP/M directory.
TotalBlocks Total number of data and directory blocks.
SysTracks Number of system tracks. These will be stored in a file callbdsk.boot.

Version CP/M version that will be accessing the filesystem. This khbe 2, 3 or
ISX:

2 CP/M 2 — no time stamps or disk labels.
3 CP/M 3 —time stamps and disk labels are present.

ISX Used by the ISX emulator. Similar to CP/M 2, but byte 13 of tHe/I@
directory entry holds the number ohusedytes in the last record, not the
number ofusedbytes.

Format Name of one of the LibDsk built-in or user-supplied formaising the geom-
etry that the simulated disk will have. Alternatively, yoancspecify the format
manually, using the same variable names as in libdskrc.

If there is no .libdsk.inifile present, LibDsk will assumeoBkSize=1024, DirBlocks=2,
TotalBlocks=175,SysTracks=1, Version=3, Format=pcw180
If you call dsk_option_set with any of the following options

25

e FS:CP/M:BSH
FS:CP/M:BLM

FS:CP/M:DSM

e FS:CP/M:DRM
e FS:CP/M:OFF
e FS:CP/M:VERSION

and the value written differs from the one used before, thegva.libdsk.ini file will be
written with the revised filesystem parameters and the ttirgcescanned. This allows
a command of the form:

dsktrans -otype rcpmfs disc-image directory

to stand a reasonable chance of working as long as the soigciendge has a CP/M
filesystem that LibDsk can detect.
To select ISX format using dsk_option_set(), use -2 as thsyfitem version:

dsk_set_option(dsk, “FS:CP/M:VERSION’’, -2);

6.3 Bugs
rcpmfs is new and untried code. The following are known bugsigsing features:

e So far, rcpmfs has only been tested under the dsktrans pattersage (which
writes the directory and then the file space), and with fanhgple operations in
a CP/M emulator. It is not known how well it holds up under hease as a live
CP/M filesystem.

e The CP/M attributes F1-F4, passwords and permissions areapped. The
SYS and ARC attributes are only mapped in the Win32 version.

e Formatting (or reformatting) an rcpmfs directory writes amew .libdsk.ini con-
taining the geometry used to do the format. However, sinck IEEOMETRY
doesn’t contain the CP/M filesystem parameters (block $iltek count, etc.)
these will be the ones previously used in that directory,quite possibly com-
pletely wrong. If you want to 'format’ the directory usingDsk, call dsk_set_option()
with the six “FS:CP/M:" options listed above to set up thereat filesystem pa-
rameters. Or create the .libdsk.ini by other means.

7 The CopyQM file format

7.1 Introduction

This section describes the file format of files created by @iyA lot of the infor-
mation has been extracted by looking at hex-dumps of the §itethere might be some
errors in the description.

26

7.2 Header

The CopyQM files consist of a header, an optional commeniditiated by the header)
followed by the tracks of the image encoded with a run lengttoding scheme. The
headeris 133 bytes long, see table. It always starts witd308x51, 0x14 }, which can
be used for auto-detection of the image. All numbers hatle-indian byte ordering.
When all bytes in the header are added together in a byteetiudt should be zero.

| Offset | Size | Comment |

0x00 1 | Always 0x43 ('C")
0x01 1 | Always 0x51 ('Q’)
0x02 1 | Always 0x14
0x03 2 | Sector size
0x0b 2 | Total number of sectors. (DOS)
0x10 2 | Number of sectors per track
0x12 | 2? | Number of heads
Ox1c | 607? | Description (e.g. “OK Double-Sided”)
0x58 1 | Type of image. 0=DOS, 1=blind, 2=HFS
0x59 1 | Density. 0=DD, 1=HD, 2=ED
0x5a 1 | Number of tracks used on image
0x5b 1 | Total number of tracks for image
0x5¢ 4 | CRC forthe used, unpacked tracks
0x60 | 11 | Volume label (DOS/HFS)
0x6b 2 | Creation time
0x6d 2 | Creation date
0x6f 2 | Length ofimage comment
0x71 1 Number of first sector - 1
0x74 1 Interleave. (O for older versions of CopyQM)
0x75 1 | Skew. Normally 0. Negative number for alt. sides
0x84 1 | Header checksum byte
7.3 CRC

The CRC is calculated for the unpacked data for all tracksalaused in the image.
The CRC value is initialized with 0 and then updated using@fRC 32 polynomial

0x104C11DB?7, bit reverse algorithm. Due to a feature in Cdy(8 bit register as

an index into a 1024 byte table) all bytes must have theirwapliits removed before
added to the CRC.

7.4 |Image comment

The image comment follows the header. It has a variable sized in the header. The
image comment can contain \O-bytes.

7.5 Image data

The image data is run length encoded. Each run is preceded @b length. If the
length is negative, the byte after the length is repedssdyth times. If the length is
positive, it is followed bylength bytes of unencoded data. It seems like a new run
of repeating or differing data is always started at each maekt Older versions of

27

CopyQM always alternates between runs of differing datarapéating data, even if
the length of one of them is zero.

8 LibDsk under Windows

This section mainly deals with the subject of direct flopplyelaccess. Other aspects
of LibDsk remain relatively consistent across Windows i@rs.

As with so many other aspects of Windows, direct access tdidppy drive is a
case of “write once - debug everywheteNot only does support vary across different
systems, it varies depending on whether LibDsk was compiitda 16-bit compiler
or a 32-bit one. This table shows the different possibgiied the resulting behaviour:

| Windows Version | Win16 Subsystem| Win32 Subsysten]
3.X Fairly good n/a
4.x (95,98 and ME) | Good but less stable Limited
NT, 2000, XP Very limited
2000, XP + ntwdm driver Good

8.1 Windows 3.x

Only the 16-bit build of LibDsk will run. The floppy support Win16 is pretty much
the same as in DOS; there is support for discs with arbitramlrers of tracks and
sectors, and arbitrary sector sizes. This means that Lildask for example, read
Acorn ADFS floppies.

8.2 Windows 4.x (95, 98 and ME)

Both the 16-bit and 32-bit versions of LibDsk will run. The-b# version is more
capable, but less stable; it can read Acorn ADFS floppieschvtiie 32-bit version
cannot. Unfortunately, 32-bit programs can't link to thetiBversion of LibDsK, but
there is a workaround (described below) involving the useRBSERVER.

8.3 Windows NT (NT 3.x, NT 4.x, 2000, XP) without ntwdm driver

The floppy drive can only read/write formats which are supgubby the floppy driver.
This is the case using either version of LibDsk.

8.4 Windows 2000 and XP with ntwdm driver

Simon Owen’s enhancement to the Windows 2000 floppy driverbeadownloaded
from <http://simonowen.com/fdrawcmd/>. Once itis inkd| LibDsk (using its 'ntwdm’
driver rather than 'floppy’) has pretty much carte blanclgarding floppy formats, and
can access discs in many formats including Acorn ADFS.

8.5 General comments on programming floppy access for Win-
dows

LibDsk has four independent drivers for accessing floppieteuWindows. They are:

10riginally said by Microsoft with respect to Java. Pot. ietBlack.
2And no, the Generic Thunk isn’t good enough. I've tried it.

28

8.5.1 The Winl6 driver.

This uses INT 0x13 to do the reads and writes, just as in MS}@8&in as in MSDOS,
there is a diskette parameter table pointed to by INT Ox1ks #Eble seems not to be
documented, which is perhaps why the Win16 subsystem in 9Mis®000/XP doesn’t
implement it. You can, fortunately, tell if this is the ca#fehe first two bytes are both
0xC4, then what you have is a Windows 2000 trap rather tharsketle parameter
table.

8.5.2 The Win32c driver.

This driver uses VWIN32 services to make INT 0x13-style calhder Windows9x.
However, there is no VWIN32 call to change the diskette patamtable, which is
why the Win16 driver can do things the Win32 drivers can’tish’t possible to get
round this by thunking to a 16-bit DLL either; the INT Ox1E tecis zero for 16-bit
DLLs in 32-bit processes.

8.5.3 The Win32 driver.

Windows NT gets close (but not close enough) to the UNIX ided everything is a
file. So while in theory it would be enough to use the normal/rdriver on “\\ . \A:*“

, in practice there are a number of nasty subtleties relatirsgich things as memory
alignment and file locking.

8.5.4 The ntwdm driver.

This driver is a wrapper around fdrawcmd.sys, which alloasmmands to be issued to
the floppy controller.

8.5.5 Other floppy APIs

Sydex produce a replacement floppy driver for 32-bit versafiwindows (SydexFDD)
which is not supported by LibDsk.

8.6 LDSERVER

LDSERVER is a program that makes the 16-bit LibDsk DLL aual#eto 32-bit pro-
grams. It does this by creating a mailslot (. \mailslot\LibDsk16") and listening
for messages. Each message corresponds to a LibDsk call.

The 32-bit LibDsk library checks for this mailslot and, iffihds it, uses it in pref-
erence to its own floppy support.

8.6.1 Compiling LDSERVER

A compiled version of LDSERVER is not supplied. You will netedbuild it yourself
from the files in the rpcserv directory; projects are prodiftlar Microsoft Visual C++
1.5 and Borland C++ 5.0.

LDSERVER calls functions in NETAPI.DLL. If your compiler @sn’t include an
import library for this DLL, you will have to generate it ugjrthe IMPLIB tool - eg:

IMPLIB NETAPI.LIB NETAPI.DLL

or the equivalent utility for your compiler.

29

8.6.2 Using LDSERVER

Just run LDSERVER.EXE, and then use a 32-bit LibDsk progréine server window
shows a reference count (O if it is idle, nonzero if LibDsk gnams are using it) and
the status should change to “Active” when it is performingpdiccess.

LDSERVER does not shut down automatically.

8.6.3 Important Security Warning

LDSERVER is a 16-bit program, written using APIs intendeddee on a local area
network. These APIs have no security support. It will happibey commands sent
from anywhere on your network. If your computer is connedtedhe Internet, it
will obey commands sent to it over the Internet. A maliciottacker could use LD-
SERVER to overwrite important system files or read confid¢ibcuments.

If you have a firewall, then make sure that the NetBIOS por% 138 and 139 are
blocked. If you don't have a firewaltlo not run LDSERVER while your computer is
connected to the I nternet!

8.7 LibDsk and COM

If you are building the 32-bit version of LibDsk with Visuak& 6.0, you can also build
the accompanying 'atlibdsk’ project, which builds a versad LibDsk that exports its
API through COM. This allows relatively easy use of LibDsbkrfr languages that
support COM binding, such as Visual BASIC or .NET languages.

8.7.1 General points

Where LibDsk functions return a dsk_err_t, ATLIBDSK retara COM HRESULT.
Thiswillbe S_OK for success, a general COM error (such asHENFPER or E_INVALIDARG),
or a FACILITY_ITF error (0x8004xxxx). The low word of a FACILY_ITF error is
the LibDsk error code, converted to a positive number (ed8004000C is FACIL-
ITY_ITF error 12, so the LibDsk error is -12, DSK_ERR_SEEKEA

Sector buffers to be read/written must be passed as vagdantaining arrays of
bytes.

The arrays of DSK_FORMAT structures passed to dsk_Iform¢) dsk pform()
are replaced by variants containing arrays of bytes - fotesper sector to format.
The last byte is the physical sector shift (0 for 128, 1 for 2&6)

ATLIBDSK exports four object classes:

8.7.2 Library

This contains LibDsk functions not associated with a patticdisk image. Its methods
are:

30

| Method

| Equivalent LibDsk call |

Comments

open dsk_open Instantiates a new Disk object.
create dsk_creat Instantiates a new Disk object.
get_psh dsk_get _psh
dosgeom dg_dosgeom Instantiates a new Geometry object.
cpm86geom dg_cpm86geom Instantiates a new Geometry object.
pcwgeom dg_pcwgeom Instantiates a new Geometry object.
aprigeom dg_aprigeom Instantiates a new Geometry object.
stdformat dg_stdformat Instantiates a new Geometry object.
stdformat_count Returns the number of formats supported by stdformat
type_enum dsk_type_enum Returns TRUE if the passed index is valid, else FALSE.
comp_enum dsk_comp_enum Returns TRUE if the passed index is valid, else FALSE.
reporter dsk_reportfunc_{set,get} This is a property of type IReporter

8.7.3 Geometry

This corresponds to the DSK_GEOMETRY structure. The foil@aproperties corre-
spond to the structure members:

e sidedness

cylinders
heads
sectors
secbase
datarate
secsize
rwgap
fmtgap
fm
nomulti

e noskip

There are also five functions. Four are for logical/physseaitor conversions:

e IS2ps
o |t2pt
e ps2ls

e pt2lt

and the last is stdformat(), which wraps dg_stdformat().

31

8.7.4 Disk

The Disk object correspondsto a LibDsk DSK_PDRIVER valueu ¥hould not create
one yourself (method calls will fail with E_POINTER) but tHie 'create’ or 'open’
methods of the Library object.

Functions included are:

e get_geometry
e close

e drive_status
e pread

e Iread

e xread

e pwrite

e lwrite

e Xwrite

e pcheck

e Icheck

e xcheck

e pformat

o Iformat

e apform

e alform

e ptread

e ltread

e xtread

e psecid

e Isecid

o Iseek

e pseek

e option_enum

all of which are pretty similar to their LibDsk namesakesefénare also the following
properties:

e comment

32

e option

e retries

e drvname

e drvdesc

e compname

e compdesc

8.7.5 IReporter

IReporter is used for the LibDsk message callback. It is aerfiace that should be
implemented by an object in your program. Set the libraryépbrter” property to
your object; then its report() and endreport() methods béltalled.

9 LibDsk RPC system

The LibDsk RPC system is designed to make disc drives on eegarhputers trans-
parently available to LibDsk applications. It operates atti@nt/server basis; LibDsk
contains a driver (called 'remote’) that can act as a cliant it can be used to imple-
ment a server.

The on-the-wire protocol is described in protocol.txt ie #thocumentation direc-
tory.

9.1 The 'serial’ driver

This is designed for using LibDsk over a serial connectioay-fsom a 3.5” computer
to a 5.25” computer. The filename specification to use at tikatoknd is:

serial:port,baud, remotename{,remotetype{, remotecompress}}
for example:
serial:/dev/ttyS0,9600+crtscts,A:

The various parts of this filename specification are:

port The local serial port to use.

e Under Linux, this is the name of a serial port (eg /dev/ttyS0)
e Under Windows, this is likewise the name of a serial port (€gV.:).

e Under DOS, you need to have a FOSSIL serial port driver loaldigsk
was tested using ADF <http://ftp.iis.com.br/pub/sim&timsdos/fossil/adf_150.zip>
(or do a web search for adf 150.zip). The portis then the rrragsigned
by the FOSSIL driver (normally 0). Note also that ADF uses regks
fixed baud rate, so you should make sure that the rate on thenanth
line matches the rate that was used when ADF was loaded.

33

baud The speed and handshaking options. LibDsk does not allowuh®er of bits,
the parity or the count of stop bits to be changed; it insisi8it communi-
cations with 1 stop bit and no parity. The speed is a numbed,(800, 1200
etc.) and the handshake option is “+crtscts” (to use RTS/Bai®Ishaking) or
“-crtscts” (not to). If neither handshake option is preséntrtscts” is assumed.
remotename The name of the file or drive on the remote computer.

remotetype The type of the file/drive (“dsk”, “floppy” etc.).

remotecompressThe compression to use on the remote computer.

9.1.1 Servers for the serial driver

One of the sample utilities supplied with LibDsk is calledstave (serslave.exe under
DOS / Windows). This is a server using the same serial prbaxabove.
Launch serslave with the command:

serslave port,baud

for example:
serslave COM1:,9600+crtscts

or in DOS (again, a FOSSIL driver is required):
serslave 0,19200

| have written a similar server for CP/M systems, called AUXIhis is a separate
download from the LibDsk web page.

9.2 The 'fork’ driver

The 'fork’ driver is used (on any system which supports thé@psystem call) to send
LibDsk requests to a local program using pipes. This drivas written for testing
purposes, but may come in handy as a poor man'’s plugin sydteenfilename speci-
fication is:

fork:program,remotename{,remotetype{,remotecompresst}
for example:

fork:./dskslave,a.dqk,dsk,sq
The various parts of this filename specification are:

program The name of the program to use; execlp() is used to launch if,re path
is given the user’s PATH will be searched. The program miket tabDsk calls
from its standard input and send results to its standardubutp

remotename The name of the file or drive.

remotetype The type of the file/drive (“dsk”, “floppy” etc.).

remotecompressThe compression to use.

An example of a server for this protocol is the example 'ftake’ program; this is a
very simple wrapper around dsk_rpc_server() which reads pd&tkets from its stan-
dard input and writes them to its standard output.

34

10 Writing new drivers

The interface between LibDsk and its drivers is defined bytRe_CLASS structure.
To add a new driver, you create a new DRV_CLASS structure aladitsto various
files.

10.1 The driver header

Firstly, create a header for this driver, basing it on (foample)1ib/drvposix.h.
The first thing in the header (after the LGPL banner) is:

typedef struct

{
DSK_DRIVER px_super;
FILE *px_£fp;
int px_readonly;
long px_filesize;

} POSIX_DSK_DRIVER;

This is where you define any variables that your driver needsdre for each disc
image. In the case of the “raw” driver, this consists of a Flh@inter to access the
underlying disc file, a “readonly” flag, and the current sizéhe drive image file. The
first member of this structure must be of type DSK_DRIVER.

The rest of this header consists of function prototypescivhiwill come back to
later.

10.2 The driver source file

Secondly, create a .c file for your driver. Again, it's prolyabasiest to base this on
lib/drvposix.c. At the start of this file, create a DRV_CLASSBucture, such as:

DRV_CLASS dc_posix =
{
sizeof (POSIX_DSK_DRIVER),
llrawll s
"Raw file driver",
posix_open,
posix_creat,
posix_close
};
The first three entries in this structure are:
e The size of your driver’s instance data;
e Thedriver’'s name (as passeddek _open() / dsk_creat())
e The driver’s description string.

The remainder of the structure is composed of function paointthe types of these
are given in drv.h. At the very least, you will need to provitie first three pointers
(*_open, *_creatand *_close); to make the driver vaguebfuls you will also need to
implement some of the others.

Once you have created this structure, edit:

35

e drivers.h. Add a declaration for your DRV_CLASS structigech as
extern DRV_CLASS dc_myformat;

e drivers.inc. Insert a reference to your structure (efgic' myformat,”) in the
list. Note that order is important; the comments in driviersdescribe how to
decide where things go.

Edit “lib/Makefile.am”. Near the top of this file is a list ofiders and their header files;
just add your .c and .h to this list.

If your driver depends on certain system headers (as alldpeyldrivers do) then
you will need to add checks for these to “configure.in” and/drvi.h”; then run “au-
toconf” to rebuild the configure script.

The function pointers in the DRV_CLASS structure are désatiin drv.h. The first
parameter to all of them (“self”) is declared as a pointer ®DDRIVER. In fact, it
is a pointer to the first member of your instance data strectiust cast the pointer to
the correct type:

/* Sanity check: Is this meant for our driver? */
if (self->dr_class != &dc_posix) return DSK_ERR_BADPTR;
pxself = (POSIX_DSK_DRIVER *)self;

and you're in business.

10.3 Driver functions
10.3.1 dc_open

dsk_err_t (*dc_open) (DSK_PDRIVER self, const char *filename)
Attempt to open a disc image. Entered with:

e “self” points to the instance data for this disc image (seevaly it will have
been initialised to zeroes using memset().

o “filename” is the name of the image to open.
Return:
DSK_ERR_OK: The driver has successfully opened the image.

DSK_ERR_NOTME: The driver cannot handle this image. Other drivers should be
allowed to try to use it.

other: The driver cannot handle this image. No other drivers shbelttied (eg: the
image was recognised by this driver, but is corrupt).

If the file has a comment, record it here using dsk_set_cort{jnen
10.3.2 dc_creat

dsk_err_t (*dc_creat) (DSK_PDRIVER self, const char *filename)

Attempt to create a new disc image. For the “floppy” drivershéives exactly as
dc_open. Parameters and results are the same as for dcerpept that DSK_ERR_NOTME
is treated like any other error.

36

10.3.3 dc_close
dsk_err_t (*dc_close) (DSK_PDRIVER self)

Close the disc image. This will be the last call your drivelt véceive for a given disc
image file, and it should free any resources itis using. Wérdtiheturns DSK_ERR_OK
or an error, this disc image will not be used again.

10.3.4 dc_read

dsk_err_t (*dc_read) (DSK_PDRIVER self, const DSK_GEOMETRY *geom, void *buf, dsk_pcyl_

Read a sector. Note that sector addresses passed to drigeralaays_ in C/H/S
format. This function has the same parameters and retunesas dsk_pread().

10.3.5 dc_write

dsk_err_t (*dc_write) (DSK_PDRIVER self, const DSK_GEOMETRY *geom, const void *buf, ds

Write a sector. This function has the same parameters amthnedlues as dsk_pwrite().
If your driver is read-only, leave this function pointer NUL

10.3.6 dc_format

dsk_err_t (*dc_format) (DSK_PDRIVER self, const DSK_GEOMETRY *geom, dsk_pcyl_t cylinde

Format a track. This function has the same parameters and retlues as dsk_pformat().
If your driver cannot format tracks, leave this functionmer NULL.

10.3.7 dc_getgeom

dsk_err_t (*dc_getgeom) (DSK_PDRIVER self, DSK_GEOMETRY *geom)

Get the disc geometry. Leave this function pointer as NULless either:

1. Your disc image does not allow a caller to use an arbitréy geometry. The
two drivers which currently do this are the Win32 one, beealvindows NT de-
cides on the geometry itself and doesn’t let programs changed the MYZ80
one, which has a single fixed geometry.

2. Yourdisc image file contains enough information to pofa#geDSK_GEOMETRY
completely. The rcpmfs and ydsk drivers do this.

3. You want to do an extended geometry probe including a adhle default one.
The internal function dsk_defgetgeom() has been providethfs; it's the same
as dsk_getgeom() but always uses the standard probe.

Returns DSK_ERR_OK if successful; DSK_ERR_NOTME or DSK RERIOTIMPL
to fall back to the standard LibDsk geometry probe; othen@slto indicate failure.

37

10.3.8 dc_secid

dsk_err_t (*dc_secid) (DSK_PDRIVER self, const DSK_GEOMETRY *geom, dsk_pcyl_t cylinder

Read the ID of a random sector on a certain track/head, and putresult”. This
function is primarily used to test for discs in CPC format {géhhave oddly-numbered
physical sectors); if the disc image can’t support this (bg:“raw” or Win32 drivers)
then leave the function pointer NULL.

10.3.9 dc_xseek

dsk_err_t (*dc_xseek) (DSK_PDRIVER self, const DSK_GEOMETRY #*geom, dsk_pcyl_t cylinder

Seek to a given cylinder / head. For disc images, just rettBK IERR_OK if the
cylinder/head are in range, or DSK_ERR_SEEKFAIL otherwiser a floppy driver,
only implement this function if your FDC can perform a seektsglf.

10.3.10 dc_xread, dc_xwrite

dsk_err_t (*dc_xread) (DSK_PDRIVER self, const DSK_GEOMETRY *geom, void *buf, dsk_pcyl
dsk_err_t (*dc_xwrite) (DSK_PDRIVER self, const DSK_GEOMETRY *geom, const void *buf, d

Read / write sector whose ID may not match its position on,disevhich is marked
as deleted. Only implement this if your disc image emulag¢ess IDs or your floppy
driver exposes this level of functionality. Currently itaely implemented in the Linux
and CPCEMU drivers.

10.3.11 dc_status

dsk_err_t (*dc_status) (DSK_PDRIVER self, const DSK_GEOMETRY &geom, dsk_phead_t head,

Return the drive status (see dsk_drive_status() for thetbireturn). “*result” will
contain the value calculated by the defaultimplementafimmmost image file drivers,
all you have to do is set the read-only bit if appropriate.

10.3.12 dc_tread

dsk_err_t (*dc_tread) (DSK_PDRIVER self, const DSK_GEOMETRY #*geom, void *buf, dsk_pcyl

Read a track. You need only implement this if your floppy drieeposes the relevant
functionality; if you don't, the library will use multiplealls to dc_read() instead. This
function has the same parameters and return values as okskd @)t

38

10.3.13 dc_xtread

dsk_err_t (*dc_xread) (DSK_PDRIVER self, const DSK_GEOMETRY *geom, void *buf, dsk_pcyl

Read a track, with extended sector matching (sector headatisc differ from physi-
cal location). This function has the same parameters andrealues as dsk_xtread().
As with dc_tread(), you need only implement this functiogaur floppy driver has a
special READ TRACK command.

10.3.14 dc_option_enum

dsk_err_t (*dc_option_enum) (DSK_DRIVER *self, int idx, char **optname);

List numerical options which your driver supports. If youiver does not support any,
you need not implement this.

10.3.15 dc_option_set, dc_option_get

dsk_err_t (*dc_option_set) (DSK_DRIVER *self, const char *optname, int value);
dsk_err_t (*dc_option_get) (DSK_DRIVER *self, const char *optname, int *value);

Get or set the value of a numerical option. Again, if your drihas no numerical
options, this need not be implemented.

Note that numerical options can 'belong’ either to a drivetoothe LibDsk core,
with the driver taking priority. For example:

o IfLibDsk accesses a FAT-format disc image using the 'dsi/eatr neither LibDsk
nor the driver will support the FS:CP/M:BSH option.

o IfLibDsk accesses a CP/M-format disc image using the 'dskied, dsk_get _geometry()
will detect the CP/M filesystem. Since the driver does nopsupthe FS:CP/M:BSH
option, it will be handled by the LibDsk core.

e If LibDsk accesses a CP/M-format disc image using the 'ydsi/er, the driver
does support the FS:CP/M:BSH option and so it will be hanbiethe driver.

It is possible for a driver to rely on the option support in ttieDsk core rather than
implement its own. This means a lot less code needs to beenyltut it does not allow
any validation to be performed on the values an option cad, mar does it notify the
driver when the value of an option is changed. Currently #yitem is used by the
myz80 driver.

To use this system, create the variables you require withigstoption:

dsk_err_t dsk_isetoption(DSK_DRIVER *self, const char *optname, int value, int create

The first three parameters are the same as for dsk_set_@pfitre last should be set
to 1 to create the new variable, or 0 to return DSK_ERR_BADGRIe variable is
not present.

To read a value back, use dsk_get_option() as normal.

39

10.3.16 dc_trackids

dsk_err_t (*dc_trackids) (DSK_DRIVER *self, const DSK_GEOMETRY *geom, dsk_pcyl_t cyli

Read the IDs of all sectors on the specified track, preferabtlge correct order and
starting at the index hole. If you leave this function poirgs NULL, LibDsk will use
a default implementation.

10.3.17 dc_rtread

dsk_err_t (*dc_rtread) (DSK_DRIVER *self, const DSK_GEOMETRY *geom, void *buf, dsk_pcy

For future expansion. Leave this function pointer as NULL.

11 Adding new compression methods

Adding a new compression method is very similar to adding\aedrthough you only
have to implement four functions.

To add a new driver, you create a new COMPRESS_CLASS streiahd add it to
various files.

11.1 Driver header

This is done as for disc drivers. If you don’t need any extraades (for example,
gzip and bzip2 compression don’t) then you don’t have toatech new structure type
- see lib/compgz.h for an example.

11.2 Driver implementation

Secondly, create a .cfile for your driver. It's probably easto base this on lib/compgz.c.
At the start of this file, create a COMPRESS_CLASS structsueh as:

COMPRESS_CLASS cc_gz =

{
sizeof (COMPRESS_DATA),
"gZ" ,
"Gzip (deflate compression)",
gz_open, /* open */
gz_creat, /* create new */
gz_commit, /* commit */
gz_abort /* abort */

3

The first three entries in this structure are:

e The size of your driver’s instance data. The GZip driver hasstance data and
so just uses COMPRESS_DATA. If it had extra data these woelthta struct
called GZ_COMPRESS_DATA, so the size here would be sizedf(GOMPRESS_DATA).

e The driver's name (as passed to dsk_open() / dsk_creat())

40

e The driver’s description string.

The remainder of the structure is composed of function paiiThe types of these are
given in drv.h. You must implement all four.
Once you have created this structure, edit:

e comp.h. Include your header.

e compress.inc. Insert a reference to your structure (egc“&uyzip,”) in the list.
Note that order is important.

Edit “lib/Makefile.am”. At the bottom of this file is a list ofrivers and their header
files; just add your .c and .h to this list.
If your driver depends on certain system headers (eg, the @z depends on
zlib.h) then you will need to add checks for these to “confégim” and “lib/compi.h”;
then run “autoconf” to rebuild the configure script.
The function pointersin the COMPRESS_CLASS structure aseidbed in lib/compress.h.
The first parameter to all of them (“self”) is declared as apmito COMPRESS_DATA.
In fact, it is a pointer to the first member of your instanceadsttucture. Just cast the
pointer to the correct type:

/* Sanity check: Is this meant for our driver? */
if (self->cd_class != &cc_sq) return DSK_ERR_BADPTR;
sqself = (SQ_COMPRESS_DATA *)self;

and you're in business.

11.3 Compression functions
11.3.1 cc_open
dsk_err_t (*cc_open) (COMPRESS_DATA *self)
Attempt to decompress a compressed file.
e “self” points to the instance data for this disc image.
¢ self->cd_cfilename is the filename of the file to decompress.
Return:
DSK_ERR_OK: The file has been decompressed.
DSK_ERR_NOTME: The file is not compressed using this driver’s method.
other: The file does belong to this driver, but it is corrupt or sonteeoerror occurred.
Two helper functions may be useful when you are writing cerop
dsk_err_t comp_fopen(COMPRESS_DATA *self, FILE *xpfp);

Open the the file whose name is giversalf->cd_cfilename. If successfulxpfp
will be the opened stream. If not, it will be NULL. If the file caonly be opened
read-only, setself->cd_readonlyto 1.

dsk_err_t comp_mktemp (COMPRESS_DATA *self, FILE **pfp);

Create a temporary file and store its nameedtf ->cd_ufilename. You should use
this to create the file that you decompress into.

41

11.3.2 cc_creat

dsk_err_t (*cc_creat) (COMPRESS_DATA *cd)

Warn the compression engine that a disc image file is beirggenleand when closed
it will be compressed. The filename is stored@t f->cd_cfilename. Normally this
just returns DSK_ERR_OK.

11.3.3 cc_commit

dsk_err_t (*cc_commit) (COMPRESS_DATA *cd)

Compress an uncompressed fileelf->cd_ufilename is the name of the file to
compressself->cd_cfilenameis the name of the output file.

11.3.4 cc_abort

dsk_err_t (*cc_abort) (COMPRESS_DATA *cd)

This is used if a file was decompressed and it's now being dlastout having been
changed. There is therefore no need to compress it agais.nbnmally just returns
DSK_ERR_OK.

12 Adding new remote transports.

Adding a new remote transport is also very similar to addidg\eer.
To add a new driver, you create a new REMOTE_CLASS structndeaald it to
various files.

12.1 Driver header

This is done as for disc drivers. Create a structure baseded@I E_DATA to hold
your class’s data — see lib/rpctios.h and lib/rpcfork.heeamples.

12.2 Driver implementation

Create a .c file for your driver. It's probably easiest to hiiseon lib/rpcfork.c. At the
start of this file, create a REMOTE_CLASS structure, such as:

REMOTE_CLASS rpc_fork =

{
sizeof (FORK_REMOTE_DATA),
"fork",
"UNIX client using fork",
fork_open, /* open */
fork_close, /* close */
fork_call, /* perform RPC */

};

The first three entries in this structure are:

42

e The size of your driver’s instance data — sizeof(your_ RENEOIDATA) struc-
ture.

e The driver's name. If the filename passed to LibDsk beginh wits name fol-
lowed by a colon, then it's assumed to be using your driver.

e The driver’s description string.

The remainder of the structure is composed of function paiiThe types of these are
given in lib/remote.h. You must implement all three.
Once you have created this structure, edit:

e lib/remall.h. Include your header.

e lib/remote.inc. Insert a reference to your structure (&gpt_fork,”) in the list.
The drivers will be tested in the order in which they appedh#file.

Edit “lib/Makefile.am”. At the bottom of this file is a list ofrivers and their header
files; just add your .c and .h to this list.

If your driver depends on certain system headers (eg, thadsrone depends on
termios.h) then you will need to add checks for these to “cumé.in” and “lib/drvi.h”;
then run “autoconf” to rebuild the configure script.

The function pointersin the REMOTE_CLASS structure aredbed in lib/compress.h.
The first parameter to all of them (“pDriver”) is declared &S8O PDRIVER; you can
extract a pointer to your instance data using the dr_remetalver like this:

/* Sanity checks */

self = (FORK_REMOTE_DATA *)pDriver->dr_remote;

if (self == NULL || self->super.rd_class != &rpc_fork)
return DSK_ERR_BADPTR;

12.3 Remote communication functions

12.3.1 rc_open

dsk_err_t (*rc_open) (DSK_PDRIVER pDriver, const char *name, char *nameout)
Connect to a remote server.
e pDriver points to a DSK_DRIVER containing the pointer to yastance data.

e name is the filename as passed to LibDsk, starting vdttver:” and containing
any connection parameters needed.

e nameoutis an output buffer with enough space to hold a stfittge same length
as the input filename. If you are returning DSK_ERR_OK, it thesset to the
input filename minus any options this driver has used. Fomgie, the “serial”
driver, given afilename like “serial:/dev/ttyS1,2400scts,example.ufi,raw” would
extract its own options and return “example.ufi,raw” here.

Return:
DSK_ERR_OK: Connection established.
DSK_ERR_NOTME: The filename passed is not recognised by this driver.

other: An error such as out-of-memory occurred.

43

12.3.2 rc_close

dsk_err_t (*rc_close) (DSK_PDRIVER pDriver)

Close the connection to the remote server.

12.3.3 rc_call

dsk_err_t (*rc_call) (DSK_PDRIVER pDriver, unsigned char *input, int inp_len, unsigned

Perform a remote procedure call to the server.

input is the packet LibDsk wants to send.

inp_len is the number of bytes in the packet.

output is a buffer for the result packet.

*out_len (on entry) is the size of the result buffer.

*out_len (on return) is the number of bytes that were populated ingkalt buffer.

In general, this call will wrap the input in whatever framibgtes are necessary (usu-
ally including the packet length, since packets do not dartteeir own length), send
the packet over the wire, wait for a response, and unpackegonse into 'output’.
Return DSK_ERR_TIMEOUT if the connection timed out (thaiak driver waits 30
seconds) and DSK_ERR_ABORT if the user deliberately brhkecbnnection.

A DQK Files

A DQK file is a .DSK file compressed using Richard Greenlaw’s&zye file format
(originally from CP/M as SQ.COM, and later built in to NSWRMM; versions also
exist for DOS and UNIX). SQ was used in preference to moreiefftccompressors
such as gzip because it can be readily decoded on 8-bit abi t6mputers.

The original reason for DQK files was software distributigrdisc image of a 180k
disc won't fit on a 180k disc, owing to various overheads. Hevethe compressed
DQK version may fit onto such a disc, and leave room for a toulrite the DQK back
out as well.

Such a tool has been included in the “dskwrite” directoryhis distribution. It
contains the following files:

e dskwrite.com: Program to write .DSK or .DQK files out to a rd@c. The
.COM file works on PCs, Amstrad PCWSs and Sinclair Spectrum +3s

dskwrite.txt: Documentation for dskwrite.

dskwrite.z80: Z80 source for the CP/M version.

e dskwrite.asm: 8086 source for the DOS version.

dskwrsea.com: The dskwrite distribution file - a self-estireg archive. It will
self-extract under CP/M or DOS.

44

Note that the files in the “dskwrite” directory are not GPLedL&PLed. They are
public domain. You may do whatsoever you please with them.

LibDsk has been given .DQK support (use the “dsk” driver Wi’ compression)
so that .DQK files don’t have to be created and compressedin-atiate process.

B LibDsk with cpmtools

cpmtools v1.9 and later <http://www.moria.de/~michgatitools/> can be configured
to use LibDsk for all disc access, thus allowing CP/M discd emulator disc images
to be read and written.

The myz80 and nanowasp drivers use a fixed disk format; herdiskdefs entries
which can be used to read them:

diskdef myz80
seclen 1024
tracks 64
sectrk 128
blocksize 4096
maxdir 1024
skew 1
boottrk 0
os 3

end

diskdef nanowasp
seclen 512
tracks 80
sectrk 10
blocksize 2048
maxdir 128
skew 1
os 2.2

end

In the old diskdefs format with one line per entry, these are:

myz80 1024 64 128 4096 1024 1 0 3
microbee 512 80 10 2048 128 1 2 2.2

C DSK/EDSK recording mode extension

This extension was proposed by me on the comp.sys.sinolkit@mp.sys.amstrad.8bit
newsgroups on 10 January 2004. It was subsequently reléagedNE 2.1.4 and
added to the formal EDSK format definition at <http://anderan.aiind.upv.es/~amstrad/docs/extdsk.html
http://andercheran.aiind.upv.es/~amstrad/docs/extdsk.html>.
DSK/EDSK originate on the Amstrad CPC, which ordinarilytesi all its diskettes
in MFM recording mode and at the Double Density rate. Howegd®INE emulates the
PcW16, which also supports the High Density rate; and theesysoftware depends
on DD discs not being readable at the HD rate.
The extension gives meanings to two unused bytes of the DS8KE Track-Info”
block:

45

Byte 12h: Data rate.

0 Unknown

1 Single or Double Density (180k, 720k, etc.)
2 High Density (1.2M, 1.4M, etc.)

3 Extended Density (2.8M)

Byte 13h: Recording mode.
0 Unknown

1FM

2 MFM

Existing files should have zeroes in these bytes; hence theou® for Unknown.
LibDsk will guess the values in if the ones in the file are zero.

46

