dnssec.c
Go to the documentation of this file.
1 /*
2  * dnssec.c
3  *
4  * contains the cryptographic function needed for DNSSEC in ldns
5  * The crypto library used is openssl
6  *
7  * (c) NLnet Labs, 2004-2008
8  *
9  * See the file LICENSE for the license
10  */
11 
12 #include <ldns/config.h>
13 
14 #include <ldns/ldns.h>
15 #include <ldns/dnssec.h>
16 
17 #include <strings.h>
18 #include <time.h>
19 
20 #ifdef HAVE_SSL
21 #include <openssl/ssl.h>
22 #include <openssl/evp.h>
23 #include <openssl/rand.h>
24 #include <openssl/err.h>
25 #include <openssl/md5.h>
26 #endif
27 
28 ldns_rr *
30  const ldns_rr_type type,
31  const ldns_rr_list *rrs)
32 {
33  size_t i;
34  ldns_rr *candidate;
35 
36  if (!name || !rrs) {
37  return NULL;
38  }
39 
40  for (i = 0; i < ldns_rr_list_rr_count(rrs); i++) {
41  candidate = ldns_rr_list_rr(rrs, i);
42  if (ldns_rr_get_type(candidate) == LDNS_RR_TYPE_RRSIG) {
43  if (ldns_dname_compare(ldns_rr_owner(candidate),
44  name) == 0 &&
46  == type
47  ) {
48  return candidate;
49  }
50  }
51  }
52 
53  return NULL;
54 }
55 
56 ldns_rr *
58  const ldns_rr_list *rrs)
59 {
60  size_t i;
61  ldns_rr *candidate;
62 
63  if (!rrsig || !rrs) {
64  return NULL;
65  }
66 
67  for (i = 0; i < ldns_rr_list_rr_count(rrs); i++) {
68  candidate = ldns_rr_list_rr(rrs, i);
69  if (ldns_rr_get_type(candidate) == LDNS_RR_TYPE_DNSKEY) {
70  if (ldns_dname_compare(ldns_rr_owner(candidate),
71  ldns_rr_rrsig_signame(rrsig)) == 0 &&
73  ldns_calc_keytag(candidate)
74  ) {
75  return candidate;
76  }
77  }
78  }
79 
80  return NULL;
81 }
82 
83 ldns_rdf *
85  if (ldns_rr_get_type(nsec) == LDNS_RR_TYPE_NSEC) {
86  return ldns_rr_rdf(nsec, 1);
87  } else if (ldns_rr_get_type(nsec) == LDNS_RR_TYPE_NSEC3) {
88  return ldns_rr_rdf(nsec, 5);
89  } else {
90  return NULL;
91  }
92 }
93 
94 /*return the owner name of the closest encloser for name from the list of rrs */
95 /* this is NOT the hash, but the original name! */
96 ldns_rdf *
99  ldns_rr_list *nsec3s)
100 {
101  /* remember parameters, they must match */
102  uint8_t algorithm;
103  uint32_t iterations;
104  uint8_t salt_length;
105  uint8_t *salt;
106 
107  ldns_rdf *sname, *hashed_sname, *tmp;
108  bool flag;
109 
110  bool exact_match_found;
111  bool in_range_found;
112 
113  ldns_status status;
114  ldns_rdf *zone_name;
115 
116  size_t nsec_i;
117  ldns_rr *nsec;
118  ldns_rdf *result = NULL;
119 
120  if (!qname || !nsec3s || ldns_rr_list_rr_count(nsec3s) < 1) {
121  return NULL;
122  }
123 
124  nsec = ldns_rr_list_rr(nsec3s, 0);
125  algorithm = ldns_nsec3_algorithm(nsec);
126  salt_length = ldns_nsec3_salt_length(nsec);
127  salt = ldns_nsec3_salt_data(nsec);
128  iterations = ldns_nsec3_iterations(nsec);
129 
130  sname = ldns_rdf_clone(qname);
131 
132  flag = false;
133 
134  zone_name = ldns_dname_left_chop(ldns_rr_owner(nsec));
135 
136  /* algorithm from nsec3-07 8.3 */
137  while (ldns_dname_label_count(sname) > 0) {
138  exact_match_found = false;
139  in_range_found = false;
140 
141  hashed_sname = ldns_nsec3_hash_name(sname,
142  algorithm,
143  iterations,
144  salt_length,
145  salt);
146 
147  status = ldns_dname_cat(hashed_sname, zone_name);
148  if(status != LDNS_STATUS_OK) {
149  LDNS_FREE(salt);
150  ldns_rdf_deep_free(zone_name);
151  ldns_rdf_deep_free(sname);
152  return NULL;
153  }
154 
155  for (nsec_i = 0; nsec_i < ldns_rr_list_rr_count(nsec3s); nsec_i++) {
156  nsec = ldns_rr_list_rr(nsec3s, nsec_i);
157 
158  /* check values of iterations etc! */
159 
160  /* exact match? */
161  if (ldns_dname_compare(ldns_rr_owner(nsec), hashed_sname) == 0) {
162  exact_match_found = true;
163  } else if (ldns_nsec_covers_name(nsec, hashed_sname)) {
164  in_range_found = true;
165  }
166 
167  }
168  if (!exact_match_found && in_range_found) {
169  flag = true;
170  } else if (exact_match_found && flag) {
171  result = ldns_rdf_clone(sname);
172  /* RFC 5155: 8.3. 2.** "The proof is complete" */
173  ldns_rdf_deep_free(hashed_sname);
174  goto done;
175  } else if (exact_match_found && !flag) {
176  /* error! */
177  ldns_rdf_deep_free(hashed_sname);
178  goto done;
179  } else {
180  flag = false;
181  }
182 
183  ldns_rdf_deep_free(hashed_sname);
184  tmp = sname;
185  sname = ldns_dname_left_chop(sname);
186  ldns_rdf_deep_free(tmp);
187  }
188 
189  done:
190  LDNS_FREE(salt);
191  ldns_rdf_deep_free(zone_name);
192  ldns_rdf_deep_free(sname);
193 
194  return result;
195 }
196 
197 bool
199 {
200  size_t i;
201  for (i = 0; i < ldns_pkt_ancount(pkt); i++) {
204  return true;
205  }
206  }
207  for (i = 0; i < ldns_pkt_nscount(pkt); i++) {
210  return true;
211  }
212  }
213  return false;
214 }
215 
216 ldns_rr_list *
218  ldns_rdf *name,
219  ldns_rr_type type)
220 {
221  uint16_t t_netorder;
222  ldns_rr_list *sigs;
223  ldns_rr_list *sigs_covered;
224  ldns_rdf *rdf_t;
225 
227  name,
230  );
231 
232  t_netorder = htons(type); /* rdf are in network order! */
233  rdf_t = ldns_rdf_new(LDNS_RDF_TYPE_TYPE, LDNS_RDF_SIZE_WORD, &t_netorder);
234  sigs_covered = ldns_rr_list_subtype_by_rdf(sigs, rdf_t, 0);
235 
236  ldns_rdf_free(rdf_t);
238 
239  return sigs_covered;
240 
241 }
242 
243 ldns_rr_list *
245 {
246  uint16_t t_netorder;
247  ldns_rr_list *sigs;
248  ldns_rr_list *sigs_covered;
249  ldns_rdf *rdf_t;
250 
251  sigs = ldns_pkt_rr_list_by_type(pkt,
254  );
255 
256  t_netorder = htons(type); /* rdf are in network order! */
258  2,
259  &t_netorder);
260  sigs_covered = ldns_rr_list_subtype_by_rdf(sigs, rdf_t, 0);
261 
262  ldns_rdf_free(rdf_t);
264 
265  return sigs_covered;
266 
267 }
268 
269 /* used only on the public key RR */
270 uint16_t
272 {
273  uint16_t ac16;
274  ldns_buffer *keybuf;
275  size_t keysize;
276 
277  if (!key) {
278  return 0;
279  }
280 
283  ) {
284  return 0;
285  }
286 
287  /* rdata to buf - only put the rdata in a buffer */
288  keybuf = ldns_buffer_new(LDNS_MIN_BUFLEN); /* grows */
289  if (!keybuf) {
290  return 0;
291  }
292  (void)ldns_rr_rdata2buffer_wire(keybuf, key);
293  /* the current pos in the buffer is the keysize */
294  keysize= ldns_buffer_position(keybuf);
295 
296  ac16 = ldns_calc_keytag_raw(ldns_buffer_begin(keybuf), keysize);
297  ldns_buffer_free(keybuf);
298  return ac16;
299 }
300 
301 uint16_t ldns_calc_keytag_raw(uint8_t* key, size_t keysize)
302 {
303  unsigned int i;
304  uint32_t ac32;
305  uint16_t ac16;
306 
307  if(keysize < 4) {
308  return 0;
309  }
310  /* look at the algorithm field, copied from 2535bis */
311  if (key[3] == LDNS_RSAMD5) {
312  ac16 = 0;
313  if (keysize > 4) {
314  memmove(&ac16, key + keysize - 3, 2);
315  }
316  ac16 = ntohs(ac16);
317  return (uint16_t) ac16;
318  } else {
319  ac32 = 0;
320  for (i = 0; (size_t)i < keysize; ++i) {
321  ac32 += (i & 1) ? key[i] : key[i] << 8;
322  }
323  ac32 += (ac32 >> 16) & 0xFFFF;
324  return (uint16_t) (ac32 & 0xFFFF);
325  }
326 }
327 
328 #ifdef HAVE_SSL
329 DSA *
331 {
332  return ldns_key_buf2dsa_raw((unsigned char*)ldns_buffer_begin(key),
333  ldns_buffer_position(key));
334 }
335 
336 DSA *
337 ldns_key_buf2dsa_raw(unsigned char* key, size_t len)
338 {
339  uint8_t T;
340  uint16_t length;
341  uint16_t offset;
342  DSA *dsa;
343  BIGNUM *Q; BIGNUM *P;
344  BIGNUM *G; BIGNUM *Y;
345 
346  if(len == 0)
347  return NULL;
348  T = (uint8_t)key[0];
349  length = (64 + T * 8);
350  offset = 1;
351 
352  if (T > 8) {
353  return NULL;
354  }
355  if(len < (size_t)1 + SHA_DIGEST_LENGTH + 3*length)
356  return NULL;
357 
358  Q = BN_bin2bn(key+offset, SHA_DIGEST_LENGTH, NULL);
359  offset += SHA_DIGEST_LENGTH;
360 
361  P = BN_bin2bn(key+offset, (int)length, NULL);
362  offset += length;
363 
364  G = BN_bin2bn(key+offset, (int)length, NULL);
365  offset += length;
366 
367  Y = BN_bin2bn(key+offset, (int)length, NULL);
368  offset += length;
369 
370  /* create the key and set its properties */
371  if(!Q || !P || !G || !Y || !(dsa = DSA_new())) {
372  BN_free(Q);
373  BN_free(P);
374  BN_free(G);
375  BN_free(Y);
376  return NULL;
377  }
378 #ifndef S_SPLINT_S
379  dsa->p = P;
380  dsa->q = Q;
381  dsa->g = G;
382  dsa->pub_key = Y;
383 #endif /* splint */
384 
385  return dsa;
386 }
387 
388 RSA *
390 {
391  return ldns_key_buf2rsa_raw((unsigned char*)ldns_buffer_begin(key),
392  ldns_buffer_position(key));
393 }
394 
395 RSA *
396 ldns_key_buf2rsa_raw(unsigned char* key, size_t len)
397 {
398  uint16_t offset;
399  uint16_t exp;
400  uint16_t int16;
401  RSA *rsa;
402  BIGNUM *modulus;
403  BIGNUM *exponent;
404 
405  if (len == 0)
406  return NULL;
407  if (key[0] == 0) {
408  if(len < 3)
409  return NULL;
410  /* need some smart comment here XXX*/
411  /* the exponent is too large so it's places
412  * futher...???? */
413  memmove(&int16, key+1, 2);
414  exp = ntohs(int16);
415  offset = 3;
416  } else {
417  exp = key[0];
418  offset = 1;
419  }
420 
421  /* key length at least one */
422  if(len < (size_t)offset + exp + 1)
423  return NULL;
424 
425  /* Exponent */
426  exponent = BN_new();
427  if(!exponent) return NULL;
428  (void) BN_bin2bn(key+offset, (int)exp, exponent);
429  offset += exp;
430 
431  /* Modulus */
432  modulus = BN_new();
433  if(!modulus) {
434  BN_free(exponent);
435  return NULL;
436  }
437  /* length of the buffer must match the key length! */
438  (void) BN_bin2bn(key+offset, (int)(len - offset), modulus);
439 
440  rsa = RSA_new();
441  if(!rsa) {
442  BN_free(exponent);
443  BN_free(modulus);
444  return NULL;
445  }
446 #ifndef S_SPLINT_S
447  rsa->n = modulus;
448  rsa->e = exponent;
449 #endif /* splint */
450 
451  return rsa;
452 }
453 
454 int
455 ldns_digest_evp(unsigned char* data, unsigned int len, unsigned char* dest,
456  const EVP_MD* md)
457 {
458  EVP_MD_CTX* ctx;
459  ctx = EVP_MD_CTX_create();
460  if(!ctx)
461  return false;
462  if(!EVP_DigestInit_ex(ctx, md, NULL) ||
463  !EVP_DigestUpdate(ctx, data, len) ||
464  !EVP_DigestFinal_ex(ctx, dest, NULL)) {
465  EVP_MD_CTX_destroy(ctx);
466  return false;
467  }
468  EVP_MD_CTX_destroy(ctx);
469  return true;
470 }
471 #endif /* HAVE_SSL */
472 
473 ldns_rr *
475 {
476  ldns_rdf *tmp;
477  ldns_rr *ds;
478  uint16_t keytag;
479  uint8_t sha1hash;
480  uint8_t *digest;
481  ldns_buffer *data_buf;
482 #ifdef USE_GOST
483  const EVP_MD* md = NULL;
484 #endif
485 
487  return NULL;
488  }
489 
490  ds = ldns_rr_new();
491  if (!ds) {
492  return NULL;
493  }
496  ldns_rr_owner(key)));
497  ldns_rr_set_ttl(ds, ldns_rr_ttl(key));
499 
500  switch(h) {
501  default:
502  case LDNS_SHA1:
503  digest = LDNS_XMALLOC(uint8_t, LDNS_SHA1_DIGEST_LENGTH);
504  if (!digest) {
505  ldns_rr_free(ds);
506  return NULL;
507  }
508  break;
509  case LDNS_SHA256:
510  digest = LDNS_XMALLOC(uint8_t, LDNS_SHA256_DIGEST_LENGTH);
511  if (!digest) {
512  ldns_rr_free(ds);
513  return NULL;
514  }
515  break;
516  case LDNS_HASH_GOST:
517 #ifdef USE_GOST
519  md = EVP_get_digestbyname("md_gost94");
520  if(!md) {
521  ldns_rr_free(ds);
522  return NULL;
523  }
524  digest = LDNS_XMALLOC(uint8_t, EVP_MD_size(md));
525  if (!digest) {
526  ldns_rr_free(ds);
527  return NULL;
528  }
529  break;
530 #else
531  /* not implemented */
532  ldns_rr_free(ds);
533  return NULL;
534 #endif
535  case LDNS_SHA384:
536 #ifdef USE_ECDSA
537  digest = LDNS_XMALLOC(uint8_t, SHA384_DIGEST_LENGTH);
538  if (!digest) {
539  ldns_rr_free(ds);
540  return NULL;
541  }
542  break;
543 #else
544  /* not implemented */
545  ldns_rr_free(ds);
546  return NULL;
547 #endif
548  }
549 
551  if (!data_buf) {
552  LDNS_FREE(digest);
553  ldns_rr_free(ds);
554  return NULL;
555  }
556 
557  /* keytag */
558  keytag = htons(ldns_calc_keytag((ldns_rr*)key));
560  sizeof(uint16_t),
561  &keytag);
562  ldns_rr_push_rdf(ds, tmp);
563 
564  /* copy the algorithm field */
565  if ((tmp = ldns_rr_rdf(key, 2)) == NULL) {
566  LDNS_FREE(digest);
567  ldns_buffer_free(data_buf);
568  ldns_rr_free(ds);
569  return NULL;
570  } else {
571  ldns_rr_push_rdf(ds, ldns_rdf_clone( tmp ));
572  }
573 
574  /* digest hash type */
575  sha1hash = (uint8_t)h;
577  sizeof(uint8_t),
578  &sha1hash);
579  ldns_rr_push_rdf(ds, tmp);
580 
581  /* digest */
582  /* owner name */
583  tmp = ldns_rdf_clone(ldns_rr_owner(key));
585  if (ldns_rdf2buffer_wire(data_buf, tmp) != LDNS_STATUS_OK) {
586  LDNS_FREE(digest);
587  ldns_buffer_free(data_buf);
588  ldns_rr_free(ds);
589  ldns_rdf_deep_free(tmp);
590  return NULL;
591  }
592  ldns_rdf_deep_free(tmp);
593 
594  /* all the rdata's */
595  if (ldns_rr_rdata2buffer_wire(data_buf,
596  (ldns_rr*)key) != LDNS_STATUS_OK) {
597  LDNS_FREE(digest);
598  ldns_buffer_free(data_buf);
599  ldns_rr_free(ds);
600  return NULL;
601  }
602  switch(h) {
603  case LDNS_SHA1:
604  (void) ldns_sha1((unsigned char *) ldns_buffer_begin(data_buf),
605  (unsigned int) ldns_buffer_position(data_buf),
606  (unsigned char *) digest);
607 
610  digest);
611  ldns_rr_push_rdf(ds, tmp);
612 
613  break;
614  case LDNS_SHA256:
615  (void) ldns_sha256((unsigned char *) ldns_buffer_begin(data_buf),
616  (unsigned int) ldns_buffer_position(data_buf),
617  (unsigned char *) digest);
620  digest);
621  ldns_rr_push_rdf(ds, tmp);
622  break;
623  case LDNS_HASH_GOST:
624 #ifdef USE_GOST
625  if(!ldns_digest_evp((unsigned char *) ldns_buffer_begin(data_buf),
626  (unsigned int) ldns_buffer_position(data_buf),
627  (unsigned char *) digest, md)) {
628  LDNS_FREE(digest);
629  ldns_buffer_free(data_buf);
630  ldns_rr_free(ds);
631  return NULL;
632  }
634  (size_t)EVP_MD_size(md),
635  digest);
636  ldns_rr_push_rdf(ds, tmp);
637 #endif
638  break;
639  case LDNS_SHA384:
640 #ifdef USE_ECDSA
641  (void) SHA384((unsigned char *) ldns_buffer_begin(data_buf),
642  (unsigned int) ldns_buffer_position(data_buf),
643  (unsigned char *) digest);
645  SHA384_DIGEST_LENGTH,
646  digest);
647  ldns_rr_push_rdf(ds, tmp);
648 #endif
649  break;
650  }
651 
652  LDNS_FREE(digest);
653  ldns_buffer_free(data_buf);
654  return ds;
655 }
656 
657 /* From RFC3845:
658  *
659  * 2.1.2. The List of Type Bit Map(s) Field
660  *
661  * The RR type space is split into 256 window blocks, each representing
662  * the low-order 8 bits of the 16-bit RR type space. Each block that
663  * has at least one active RR type is encoded using a single octet
664  * window number (from 0 to 255), a single octet bitmap length (from 1
665  * to 32) indicating the number of octets used for the window block's
666  * bitmap, and up to 32 octets (256 bits) of bitmap.
667  *
668  * Window blocks are present in the NSEC RR RDATA in increasing
669  * numerical order.
670  *
671  * "|" denotes concatenation
672  *
673  * Type Bit Map(s) Field = ( Window Block # | Bitmap Length | Bitmap ) +
674  *
675  * <cut>
676  *
677  * Blocks with no types present MUST NOT be included. Trailing zero
678  * octets in the bitmap MUST be omitted. The length of each block's
679  * bitmap is determined by the type code with the largest numerical
680  * value within that block, among the set of RR types present at the
681  * NSEC RR's owner name. Trailing zero octets not specified MUST be
682  * interpreted as zero octets.
683  */
684 ldns_rdf *
686  size_t size,
687  ldns_rr_type nsec_type)
688 {
689  uint8_t window; /* most significant octet of type */
690  uint8_t subtype; /* least significant octet of type */
691  uint16_t windows[256] /* Max subtype per window */
692 #ifndef S_SPLINT_S
693  = { 0 } /* Initialize ALL elements with 0 */
694 #endif
695  ;
696  ldns_rr_type* d; /* used to traverse rr_type_list*/
697  size_t i; /* used to traverse windows array */
698 
699  size_t sz; /* size needed for type bitmap rdf */
700  uint8_t* data = NULL; /* rdf data */
701  uint8_t* dptr; /* used to itraverse rdf data */
702  ldns_rdf* rdf; /* bitmap rdf to return */
703 
704  if (nsec_type != LDNS_RR_TYPE_NSEC &&
705  nsec_type != LDNS_RR_TYPE_NSEC3) {
706  return NULL;
707  }
708 
709  /* Which other windows need to be in the bitmap rdf?
710  */
711  for (d = rr_type_list; d < rr_type_list + size; d++) {
712  window = *d >> 8;
713  subtype = *d & 0xff;
714  if (windows[window] < subtype) {
715  windows[window] = subtype;
716  }
717  }
718 
719  /* How much space do we need in the rdf for those windows?
720  */
721  sz = 0;
722  for (i = 0; i < 256; i++) {
723  if (windows[i]) {
724  sz += windows[i] / 8 + 3;
725  }
726  }
727  if (sz > 0) {
728  /* Format rdf data according RFC3845 Section 2.1.2 (see above)
729  */
730  dptr = data = LDNS_CALLOC(uint8_t, sz);
731  if (!data) {
732  return NULL;
733  }
734  for (i = 0; i < 256; i++) {
735  if (windows[i]) {
736  *dptr++ = (uint8_t)i;
737  *dptr++ = (uint8_t)(windows[i] / 8 + 1);
738 
739  /* Now let windows[i] index the bitmap
740  * within data
741  */
742  windows[i] = (uint16_t)(dptr - data);
743 
744  dptr += dptr[-1];
745  }
746  }
747  }
748 
749  /* Set the bits?
750  */
751  for (d = rr_type_list; d < rr_type_list + size; d++) {
752  subtype = *d & 0xff;
753  data[windows[*d >> 8] + subtype/8] |= (0x80 >> (subtype % 8));
754  }
755 
756  /* Allocate and return rdf structure for the data
757  */
758  rdf = ldns_rdf_new(LDNS_RDF_TYPE_BITMAP, sz, data);
759  if (!rdf) {
760  LDNS_FREE(data);
761  return NULL;
762  }
763  return rdf;
764 }
765 
766 int
768  ldns_rr_type type)
769 {
770  ldns_dnssec_rrsets *cur_rrset = rrsets;
771  while (cur_rrset) {
772  if (cur_rrset->type == type) {
773  return 1;
774  }
775  cur_rrset = cur_rrset->next;
776  }
777  return 0;
778 }
779 
780 ldns_rr *
782  ldns_dnssec_name *to,
783  ldns_rr_type nsec_type)
784 {
785  ldns_rr *nsec_rr;
786  ldns_rr_type types[65536];
787  size_t type_count = 0;
788  ldns_dnssec_rrsets *cur_rrsets;
789  int on_delegation_point;
790 
791  if (!from || !to || (nsec_type != LDNS_RR_TYPE_NSEC)) {
792  return NULL;
793  }
794 
795  nsec_rr = ldns_rr_new();
796  ldns_rr_set_type(nsec_rr, nsec_type);
799 
800  on_delegation_point = ldns_dnssec_rrsets_contains_type(
801  from->rrsets, LDNS_RR_TYPE_NS)
803  from->rrsets, LDNS_RR_TYPE_SOA);
804 
805  cur_rrsets = from->rrsets;
806  while (cur_rrsets) {
807  /* Do not include non-authoritative rrsets on the delegation point
808  * in the type bitmap */
809  if ((on_delegation_point && (
810  cur_rrsets->type == LDNS_RR_TYPE_NS
811  || cur_rrsets->type == LDNS_RR_TYPE_DS))
812  || (!on_delegation_point &&
813  cur_rrsets->type != LDNS_RR_TYPE_RRSIG
814  && cur_rrsets->type != LDNS_RR_TYPE_NSEC)) {
815 
816  types[type_count] = cur_rrsets->type;
817  type_count++;
818  }
819  cur_rrsets = cur_rrsets->next;
820 
821  }
822  types[type_count] = LDNS_RR_TYPE_RRSIG;
823  type_count++;
824  types[type_count] = LDNS_RR_TYPE_NSEC;
825  type_count++;
826 
828  type_count,
829  nsec_type));
830 
831  return nsec_rr;
832 }
833 
834 ldns_rr *
836  ldns_dnssec_name *to,
837  ldns_rdf *zone_name,
838  uint8_t algorithm,
839  uint8_t flags,
840  uint16_t iterations,
841  uint8_t salt_length,
842  uint8_t *salt)
843 {
844  ldns_rr *nsec_rr;
845  ldns_rr_type types[65536];
846  size_t type_count = 0;
847  ldns_dnssec_rrsets *cur_rrsets;
848  ldns_status status;
849  int on_delegation_point;
850 
851  if (!from) {
852  return NULL;
853  }
854 
856  ldns_rr_set_owner(nsec_rr,
858  algorithm,
859  iterations,
860  salt_length,
861  salt));
862  status = ldns_dname_cat(ldns_rr_owner(nsec_rr), zone_name);
863  if(status != LDNS_STATUS_OK) {
864  ldns_rr_free(nsec_rr);
865  return NULL;
866  }
868  algorithm,
869  flags,
870  iterations,
871  salt_length,
872  salt);
873 
874  on_delegation_point = ldns_dnssec_rrsets_contains_type(
875  from->rrsets, LDNS_RR_TYPE_NS)
877  from->rrsets, LDNS_RR_TYPE_SOA);
878  cur_rrsets = from->rrsets;
879  while (cur_rrsets) {
880  /* Do not include non-authoritative rrsets on the delegation point
881  * in the type bitmap. Potentionally not skipping insecure
882  * delegation should have been done earlier, in function
883  * ldns_dnssec_zone_create_nsec3s, or even earlier in:
884  * ldns_dnssec_zone_sign_nsec3_flg .
885  */
886  if ((on_delegation_point && (
887  cur_rrsets->type == LDNS_RR_TYPE_NS
888  || cur_rrsets->type == LDNS_RR_TYPE_DS))
889  || (!on_delegation_point &&
890  cur_rrsets->type != LDNS_RR_TYPE_RRSIG)) {
891 
892  types[type_count] = cur_rrsets->type;
893  type_count++;
894  }
895  cur_rrsets = cur_rrsets->next;
896  }
897  /* always add rrsig type if this is not an unsigned
898  * delegation
899  */
900  if (type_count > 0 &&
901  !(type_count == 1 && types[0] == LDNS_RR_TYPE_NS)) {
902  types[type_count] = LDNS_RR_TYPE_RRSIG;
903  type_count++;
904  }
905 
906  /* leave next rdata empty if they weren't precomputed yet */
907  if (to && to->hashed_name) {
908  (void) ldns_rr_set_rdf(nsec_rr,
910  4);
911  } else {
912  (void) ldns_rr_set_rdf(nsec_rr, NULL, 4);
913  }
914 
915  ldns_rr_push_rdf(nsec_rr,
917  type_count,
919 
920  return nsec_rr;
921 }
922 
923 ldns_rr *
924 ldns_create_nsec(ldns_rdf *cur_owner, ldns_rdf *next_owner, ldns_rr_list *rrs)
925 {
926  /* we do not do any check here - garbage in, garbage out */
927 
928  /* the the start and end names - get the type from the
929  * before rrlist */
930 
931  /* inefficient, just give it a name, a next name, and a list of rrs */
932  /* we make 1 big uberbitmap first, then windows */
933  /* todo: make something more efficient :) */
934  uint16_t i;
935  ldns_rr *i_rr;
936  uint16_t i_type;
937 
938  ldns_rr *nsec = NULL;
939  ldns_rr_type i_type_list[65536];
940  size_t type_count = 0;
941 
942  nsec = ldns_rr_new();
944  ldns_rr_set_owner(nsec, ldns_rdf_clone(cur_owner));
945  ldns_rr_push_rdf(nsec, ldns_rdf_clone(next_owner));
946 
947  for (i = 0; i < ldns_rr_list_rr_count(rrs); i++) {
948  i_rr = ldns_rr_list_rr(rrs, i);
949  if (ldns_rdf_compare(cur_owner,
950  ldns_rr_owner(i_rr)) == 0) {
951  i_type = ldns_rr_get_type(i_rr);
952  if (i_type != LDNS_RR_TYPE_RRSIG && i_type != LDNS_RR_TYPE_NSEC) {
953  if (type_count == 0 || i_type_list[type_count-1] != i_type) {
954  i_type_list[type_count] = i_type;
955  type_count++;
956  }
957  }
958  }
959  }
960 
961  i_type_list[type_count] = LDNS_RR_TYPE_RRSIG;
962  type_count++;
963  i_type_list[type_count] = LDNS_RR_TYPE_NSEC;
964  type_count++;
965 
966  ldns_rr_push_rdf(nsec,
967  ldns_dnssec_create_nsec_bitmap(i_type_list,
968  type_count, LDNS_RR_TYPE_NSEC));
969 
970  return nsec;
971 }
972 
973 ldns_rdf *
975  uint8_t algorithm,
976  uint16_t iterations,
977  uint8_t salt_length,
978  uint8_t *salt)
979 {
980  size_t hashed_owner_str_len;
981  ldns_rdf *cann;
982  ldns_rdf *hashed_owner;
983  unsigned char *hashed_owner_str;
984  char *hashed_owner_b32;
985  size_t hashed_owner_b32_len;
986  uint32_t cur_it;
987  /* define to contain the largest possible hash, which is
988  * sha1 at the moment */
989  unsigned char hash[LDNS_SHA1_DIGEST_LENGTH];
990  ldns_status status;
991 
992  /* TODO: mnemonic list for hash algs SHA-1, default to 1 now (sha1) */
993  if (algorithm != LDNS_SHA1) {
994  return NULL;
995  }
996 
997  /* prepare the owner name according to the draft section bla */
998  cann = ldns_rdf_clone(name);
999  if(!cann) {
1000 #ifdef STDERR_MSGS
1001  fprintf(stderr, "Memory error\n");
1002 #endif
1003  return NULL;
1004  }
1005  ldns_dname2canonical(cann);
1006 
1007  hashed_owner_str_len = salt_length + ldns_rdf_size(cann);
1008  hashed_owner_str = LDNS_XMALLOC(unsigned char, hashed_owner_str_len);
1009  if(!hashed_owner_str) {
1010  ldns_rdf_deep_free(cann);
1011  return NULL;
1012  }
1013  memcpy(hashed_owner_str, ldns_rdf_data(cann), ldns_rdf_size(cann));
1014  memcpy(hashed_owner_str + ldns_rdf_size(cann), salt, salt_length);
1015  ldns_rdf_deep_free(cann);
1016 
1017  for (cur_it = iterations + 1; cur_it > 0; cur_it--) {
1018  (void) ldns_sha1((unsigned char *) hashed_owner_str,
1019  (unsigned int) hashed_owner_str_len, hash);
1020 
1021  LDNS_FREE(hashed_owner_str);
1022  hashed_owner_str_len = salt_length + LDNS_SHA1_DIGEST_LENGTH;
1023  hashed_owner_str = LDNS_XMALLOC(unsigned char, hashed_owner_str_len);
1024  if (!hashed_owner_str) {
1025  return NULL;
1026  }
1027  memcpy(hashed_owner_str, hash, LDNS_SHA1_DIGEST_LENGTH);
1028  memcpy(hashed_owner_str + LDNS_SHA1_DIGEST_LENGTH, salt, salt_length);
1029  hashed_owner_str_len = LDNS_SHA1_DIGEST_LENGTH + salt_length;
1030  }
1031 
1032  LDNS_FREE(hashed_owner_str);
1033  hashed_owner_str = hash;
1034  hashed_owner_str_len = LDNS_SHA1_DIGEST_LENGTH;
1035 
1036  hashed_owner_b32 = LDNS_XMALLOC(char,
1037  ldns_b32_ntop_calculate_size(hashed_owner_str_len) + 1);
1038  if(!hashed_owner_b32) {
1039  return NULL;
1040  }
1041  hashed_owner_b32_len = (size_t) ldns_b32_ntop_extended_hex(
1042  (uint8_t *) hashed_owner_str,
1043  hashed_owner_str_len,
1044  hashed_owner_b32,
1045  ldns_b32_ntop_calculate_size(hashed_owner_str_len)+1);
1046  if (hashed_owner_b32_len < 1) {
1047 #ifdef STDERR_MSGS
1048  fprintf(stderr, "Error in base32 extended hex encoding ");
1049  fprintf(stderr, "of hashed owner name (name: ");
1050  ldns_rdf_print(stderr, name);
1051  fprintf(stderr, ", return code: %u)\n",
1052  (unsigned int) hashed_owner_b32_len);
1053 #endif
1054  LDNS_FREE(hashed_owner_b32);
1055  return NULL;
1056  }
1057  hashed_owner_b32[hashed_owner_b32_len] = '\0';
1058 
1059  status = ldns_str2rdf_dname(&hashed_owner, hashed_owner_b32);
1060  if (status != LDNS_STATUS_OK) {
1061 #ifdef STDERR_MSGS
1062  fprintf(stderr, "Error creating rdf from %s\n", hashed_owner_b32);
1063 #endif
1064  LDNS_FREE(hashed_owner_b32);
1065  return NULL;
1066  }
1067 
1068  LDNS_FREE(hashed_owner_b32);
1069  return hashed_owner;
1070 }
1071 
1072 void
1074  uint8_t algorithm,
1075  uint8_t flags,
1076  uint16_t iterations,
1077  uint8_t salt_length,
1078  uint8_t *salt)
1079 {
1080  ldns_rdf *salt_rdf = NULL;
1081  uint8_t *salt_data = NULL;
1082  ldns_rdf *old;
1083 
1084  old = ldns_rr_set_rdf(rr,
1086  1, (void*)&algorithm),
1087  0);
1088  if (old) ldns_rdf_deep_free(old);
1089 
1090  old = ldns_rr_set_rdf(rr,
1092  1, (void*)&flags),
1093  1);
1094  if (old) ldns_rdf_deep_free(old);
1095 
1096  old = ldns_rr_set_rdf(rr,
1098  iterations),
1099  2);
1100  if (old) ldns_rdf_deep_free(old);
1101 
1102  salt_data = LDNS_XMALLOC(uint8_t, salt_length + 1);
1103  if(!salt_data) {
1104  /* no way to return error */
1105  return;
1106  }
1107  salt_data[0] = salt_length;
1108  memcpy(salt_data + 1, salt, salt_length);
1110  salt_length + 1,
1111  salt_data);
1112  if(!salt_rdf) {
1113  LDNS_FREE(salt_data);
1114  /* no way to return error */
1115  return;
1116  }
1117 
1118  old = ldns_rr_set_rdf(rr, salt_rdf, 3);
1119  if (old) ldns_rdf_deep_free(old);
1120  LDNS_FREE(salt_data);
1121 }
1122 
1123 static int
1124 rr_list_delegation_only(ldns_rdf *origin, ldns_rr_list *rr_list)
1125 {
1126  size_t i;
1127  ldns_rr *cur_rr;
1128  if (!origin || !rr_list) return 0;
1129  for (i = 0; i < ldns_rr_list_rr_count(rr_list); i++) {
1130  cur_rr = ldns_rr_list_rr(rr_list, i);
1131  if (ldns_dname_compare(ldns_rr_owner(cur_rr), origin) == 0) {
1132  return 0;
1133  }
1134  if (ldns_rr_get_type(cur_rr) != LDNS_RR_TYPE_NS) {
1135  return 0;
1136  }
1137  }
1138  return 1;
1139 }
1140 
1141 /* this will NOT return the NSEC3 completed, you will have to run the
1142  finalize function on the rrlist later! */
1143 ldns_rr *
1145  ldns_rdf *cur_zone,
1146  ldns_rr_list *rrs,
1147  uint8_t algorithm,
1148  uint8_t flags,
1149  uint16_t iterations,
1150  uint8_t salt_length,
1151  uint8_t *salt,
1152  bool emptynonterminal)
1153 {
1154  size_t i;
1155  ldns_rr *i_rr;
1156  uint16_t i_type;
1157 
1158  ldns_rr *nsec = NULL;
1159  ldns_rdf *hashed_owner = NULL;
1160 
1161  ldns_status status;
1162 
1163  ldns_rr_type i_type_list[1024];
1164  size_t type_count = 0;
1165 
1166  hashed_owner = ldns_nsec3_hash_name(cur_owner,
1167  algorithm,
1168  iterations,
1169  salt_length,
1170  salt);
1171  status = ldns_dname_cat(hashed_owner, cur_zone);
1172  if(status != LDNS_STATUS_OK) {
1173  ldns_rdf_deep_free(hashed_owner);
1174  return NULL;
1175  }
1177  if(!nsec) {
1178  ldns_rdf_deep_free(hashed_owner);
1179  return NULL;
1180  }
1182  ldns_rr_set_owner(nsec, hashed_owner);
1183 
1185  algorithm,
1186  flags,
1187  iterations,
1188  salt_length,
1189  salt);
1190  (void) ldns_rr_set_rdf(nsec, NULL, 4);
1191 
1192 
1193  for (i = 0; i < ldns_rr_list_rr_count(rrs); i++) {
1194  i_rr = ldns_rr_list_rr(rrs, i);
1195  if (ldns_rdf_compare(cur_owner,
1196  ldns_rr_owner(i_rr)) == 0) {
1197  i_type = ldns_rr_get_type(i_rr);
1198  if (type_count == 0 || i_type_list[type_count-1] != i_type) {
1199  i_type_list[type_count] = i_type;
1200  type_count++;
1201  }
1202  }
1203  }
1204 
1205  /* add RRSIG anyway, but only if this is not an ENT or
1206  * an unsigned delegation */
1207  if (!emptynonterminal && !rr_list_delegation_only(cur_zone, rrs)) {
1208  i_type_list[type_count] = LDNS_RR_TYPE_RRSIG;
1209  type_count++;
1210  }
1211 
1212  /* and SOA if owner == zone */
1213  if (ldns_dname_compare(cur_zone, cur_owner) == 0) {
1214  i_type_list[type_count] = LDNS_RR_TYPE_SOA;
1215  type_count++;
1216  }
1217 
1218  ldns_rr_push_rdf(nsec,
1219  ldns_dnssec_create_nsec_bitmap(i_type_list,
1220  type_count, LDNS_RR_TYPE_NSEC3));
1221 
1222  return nsec;
1223 }
1224 
1225 uint8_t
1227 {
1228  if (nsec3_rr &&
1229  (ldns_rr_get_type(nsec3_rr) == LDNS_RR_TYPE_NSEC3 ||
1231  && (ldns_rr_rdf(nsec3_rr, 0) != NULL)
1232  && ldns_rdf_size(ldns_rr_rdf(nsec3_rr, 0)) > 0) {
1233  return ldns_rdf2native_int8(ldns_rr_rdf(nsec3_rr, 0));
1234  }
1235  return 0;
1236 }
1237 
1238 uint8_t
1239 ldns_nsec3_flags(const ldns_rr *nsec3_rr)
1240 {
1241  if (nsec3_rr &&
1242  (ldns_rr_get_type(nsec3_rr) == LDNS_RR_TYPE_NSEC3 ||
1244  && (ldns_rr_rdf(nsec3_rr, 1) != NULL)
1245  && ldns_rdf_size(ldns_rr_rdf(nsec3_rr, 1)) > 0) {
1246  return ldns_rdf2native_int8(ldns_rr_rdf(nsec3_rr, 1));
1247  }
1248  return 0;
1249 }
1250 
1251 bool
1252 ldns_nsec3_optout(const ldns_rr *nsec3_rr)
1253 {
1254  return (ldns_nsec3_flags(nsec3_rr) & LDNS_NSEC3_VARS_OPTOUT_MASK);
1255 }
1256 
1257 uint16_t
1259 {
1260  if (nsec3_rr &&
1261  (ldns_rr_get_type(nsec3_rr) == LDNS_RR_TYPE_NSEC3 ||
1263  && (ldns_rr_rdf(nsec3_rr, 2) != NULL)
1264  && ldns_rdf_size(ldns_rr_rdf(nsec3_rr, 2)) > 0) {
1265  return ldns_rdf2native_int16(ldns_rr_rdf(nsec3_rr, 2));
1266  }
1267  return 0;
1268 
1269 }
1270 
1271 ldns_rdf *
1272 ldns_nsec3_salt(const ldns_rr *nsec3_rr)
1273 {
1274  if (nsec3_rr &&
1275  (ldns_rr_get_type(nsec3_rr) == LDNS_RR_TYPE_NSEC3 ||
1277  ) {
1278  return ldns_rr_rdf(nsec3_rr, 3);
1279  }
1280  return NULL;
1281 }
1282 
1283 uint8_t
1285 {
1286  ldns_rdf *salt_rdf = ldns_nsec3_salt(nsec3_rr);
1287  if (salt_rdf && ldns_rdf_size(salt_rdf) > 0) {
1288  return (uint8_t) ldns_rdf_data(salt_rdf)[0];
1289  }
1290  return 0;
1291 }
1292 
1293 /* allocs data, free with LDNS_FREE() */
1294 uint8_t *
1296 {
1297  uint8_t salt_length;
1298  uint8_t *salt;
1299 
1300  ldns_rdf *salt_rdf = ldns_nsec3_salt(nsec3_rr);
1301  if (salt_rdf && ldns_rdf_size(salt_rdf) > 0) {
1302  salt_length = ldns_rdf_data(salt_rdf)[0];
1303  salt = LDNS_XMALLOC(uint8_t, salt_length);
1304  if(!salt) return NULL;
1305  memcpy(salt, &ldns_rdf_data(salt_rdf)[1], salt_length);
1306  return salt;
1307  }
1308  return NULL;
1309 }
1310 
1311 ldns_rdf *
1313 {
1314  if (!nsec3_rr || ldns_rr_get_type(nsec3_rr) != LDNS_RR_TYPE_NSEC3) {
1315  return NULL;
1316  } else {
1317  return ldns_rr_rdf(nsec3_rr, 4);
1318  }
1319 }
1320 
1321 ldns_rdf *
1322 ldns_nsec3_bitmap(const ldns_rr *nsec3_rr)
1323 {
1324  if (!nsec3_rr || ldns_rr_get_type(nsec3_rr) != LDNS_RR_TYPE_NSEC3) {
1325  return NULL;
1326  } else {
1327  return ldns_rr_rdf(nsec3_rr, 5);
1328  }
1329 }
1330 
1331 ldns_rdf *
1333 {
1334  uint8_t algorithm;
1335  uint16_t iterations;
1336  uint8_t salt_length;
1337  uint8_t *salt = 0;
1338 
1339  ldns_rdf *hashed_owner;
1340 
1341  algorithm = ldns_nsec3_algorithm(nsec);
1342  salt_length = ldns_nsec3_salt_length(nsec);
1343  salt = ldns_nsec3_salt_data(nsec);
1344  iterations = ldns_nsec3_iterations(nsec);
1345 
1346  hashed_owner = ldns_nsec3_hash_name(name,
1347  algorithm,
1348  iterations,
1349  salt_length,
1350  salt);
1351 
1352  LDNS_FREE(salt);
1353  return hashed_owner;
1354 }
1355 
1356 bool
1358 {
1359  uint8_t* dptr;
1360  uint8_t* dend;
1361 
1362  /* From RFC3845 Section 2.1.2:
1363  *
1364  * "The RR type space is split into 256 window blocks, each re-
1365  * presenting the low-order 8 bits of the 16-bit RR type space."
1366  */
1367  uint8_t window = type >> 8;
1368  uint8_t subtype = type & 0xff;
1369 
1370  if (! bitmap) {
1371  return false;
1372  }
1373  assert(ldns_rdf_get_type(bitmap) == LDNS_RDF_TYPE_BITMAP);
1374 
1375  dptr = ldns_rdf_data(bitmap);
1376  dend = ldns_rdf_data(bitmap) + ldns_rdf_size(bitmap);
1377 
1378  /* Type Bitmap = ( Window Block # | Bitmap Length | Bitmap ) +
1379  * dptr[0] dptr[1] dptr[2:]
1380  */
1381  while (dptr < dend && dptr[0] <= window) {
1382 
1383  if (dptr[0] == window && subtype / 8 < dptr[1] &&
1384  dptr + dptr[1] + 2 <= dend) {
1385 
1386  return dptr[2 + subtype / 8] & (0x80 >> (subtype % 8));
1387  }
1388  dptr += dptr[1] + 2; /* next window */
1389  }
1390  return false;
1391 }
1392 
1395 {
1396  uint8_t* dptr;
1397  uint8_t* dend;
1398 
1399  /* From RFC3845 Section 2.1.2:
1400  *
1401  * "The RR type space is split into 256 window blocks, each re-
1402  * presenting the low-order 8 bits of the 16-bit RR type space."
1403  */
1404  uint8_t window = type >> 8;
1405  uint8_t subtype = type & 0xff;
1406 
1407  if (! bitmap) {
1408  return false;
1409  }
1410  assert(ldns_rdf_get_type(bitmap) == LDNS_RDF_TYPE_BITMAP);
1411 
1412  dptr = ldns_rdf_data(bitmap);
1413  dend = ldns_rdf_data(bitmap) + ldns_rdf_size(bitmap);
1414 
1415  /* Type Bitmap = ( Window Block # | Bitmap Length | Bitmap ) +
1416  * dptr[0] dptr[1] dptr[2:]
1417  */
1418  while (dptr < dend && dptr[0] <= window) {
1419 
1420  if (dptr[0] == window && subtype / 8 < dptr[1] &&
1421  dptr + dptr[1] + 2 <= dend) {
1422 
1423  dptr[2 + subtype / 8] |= (0x80 >> (subtype % 8));
1424  return LDNS_STATUS_OK;
1425  }
1426  dptr += dptr[1] + 2; /* next window */
1427  }
1429 }
1430 
1433 {
1434  uint8_t* dptr;
1435  uint8_t* dend;
1436 
1437  /* From RFC3845 Section 2.1.2:
1438  *
1439  * "The RR type space is split into 256 window blocks, each re-
1440  * presenting the low-order 8 bits of the 16-bit RR type space."
1441  */
1442  uint8_t window = type >> 8;
1443  uint8_t subtype = type & 0xff;
1444 
1445  if (! bitmap) {
1446  return false;
1447  }
1448 
1449  assert(ldns_rdf_get_type(bitmap) == LDNS_RDF_TYPE_BITMAP);
1450 
1451  dptr = ldns_rdf_data(bitmap);
1452  dend = ldns_rdf_data(bitmap) + ldns_rdf_size(bitmap);
1453 
1454  /* Type Bitmap = ( Window Block # | Bitmap Length | Bitmap ) +
1455  * dptr[0] dptr[1] dptr[2:]
1456  */
1457  while (dptr < dend && dptr[0] <= window) {
1458 
1459  if (dptr[0] == window && subtype / 8 < dptr[1] &&
1460  dptr + dptr[1] + 2 <= dend) {
1461 
1462  dptr[2 + subtype / 8] &= ~(0x80 >> (subtype % 8));
1463  return LDNS_STATUS_OK;
1464  }
1465  dptr += dptr[1] + 2; /* next window */
1466  }
1468 }
1469 
1470 
1471 bool
1472 ldns_nsec_covers_name(const ldns_rr *nsec, const ldns_rdf *name)
1473 {
1474  ldns_rdf *nsec_owner = ldns_rr_owner(nsec);
1475  ldns_rdf *hash_next;
1476  char *next_hash_str;
1477  ldns_rdf *nsec_next = NULL;
1478  ldns_status status;
1479  ldns_rdf *chopped_dname;
1480  bool result;
1481 
1482  if (ldns_rr_get_type(nsec) == LDNS_RR_TYPE_NSEC) {
1483  if (ldns_rr_rdf(nsec, 0) != NULL) {
1484  nsec_next = ldns_rdf_clone(ldns_rr_rdf(nsec, 0));
1485  } else {
1486  return false;
1487  }
1488  } else if (ldns_rr_get_type(nsec) == LDNS_RR_TYPE_NSEC3) {
1489  hash_next = ldns_nsec3_next_owner(nsec);
1490  next_hash_str = ldns_rdf2str(hash_next);
1491  nsec_next = ldns_dname_new_frm_str(next_hash_str);
1492  LDNS_FREE(next_hash_str);
1493  chopped_dname = ldns_dname_left_chop(nsec_owner);
1494  status = ldns_dname_cat(nsec_next, chopped_dname);
1495  ldns_rdf_deep_free(chopped_dname);
1496  if (status != LDNS_STATUS_OK) {
1497  printf("error catting: %s\n", ldns_get_errorstr_by_id(status));
1498  }
1499  } else {
1500  ldns_rdf_deep_free(nsec_next);
1501  return false;
1502  }
1503 
1504  /* in the case of the last nsec */
1505  if(ldns_dname_compare(nsec_owner, nsec_next) > 0) {
1506  result = (ldns_dname_compare(nsec_owner, name) <= 0 ||
1507  ldns_dname_compare(name, nsec_next) < 0);
1508  } else if(ldns_dname_compare(nsec_owner, nsec_next) < 0) {
1509  result = (ldns_dname_compare(nsec_owner, name) <= 0 &&
1510  ldns_dname_compare(name, nsec_next) < 0);
1511  } else {
1512  result = true;
1513  }
1514 
1515  ldns_rdf_deep_free(nsec_next);
1516  return result;
1517 }
1518 
1519 #ifdef HAVE_SSL
1520 /* sig may be null - if so look in the packet */
1521 
1524  ldns_rr_list *k, ldns_rr_list *s,
1525  time_t check_time, ldns_rr_list *good_keys)
1526 {
1527  ldns_rr_list *rrset;
1528  ldns_rr_list *sigs;
1529  ldns_rr_list *sigs_covered;
1530  ldns_rdf *rdf_t;
1531  ldns_rr_type t_netorder;
1532 
1533  if (!k) {
1534  return LDNS_STATUS_ERR;
1535  /* return LDNS_STATUS_CRYPTO_NO_DNSKEY; */
1536  }
1537 
1538  if (t == LDNS_RR_TYPE_RRSIG) {
1539  /* we don't have RRSIG(RRSIG) (yet? ;-) ) */
1540  return LDNS_STATUS_ERR;
1541  }
1542 
1543  if (s) {
1544  /* if s is not NULL, the sigs are given to use */
1545  sigs = s;
1546  } else {
1547  /* otherwise get them from the packet */
1551  if (!sigs) {
1552  /* no sigs */
1553  return LDNS_STATUS_ERR;
1554  /* return LDNS_STATUS_CRYPTO_NO_RRSIG; */
1555  }
1556  }
1557 
1558  /* rrsig are subtyped, so now we need to find the correct
1559  * sigs for the type t
1560  */
1561  t_netorder = htons(t); /* rdf are in network order! */
1562  /* a type identifier is a 16-bit number, so the size is 2 bytes */
1563  rdf_t = ldns_rdf_new(LDNS_RDF_TYPE_TYPE, 2, &t_netorder);
1564 
1565  sigs_covered = ldns_rr_list_subtype_by_rdf(sigs, rdf_t, 0);
1566  ldns_rdf_free(rdf_t);
1567  if (! sigs_covered) {
1568  if (! s) {
1569  ldns_rr_list_deep_free(sigs);
1570  }
1571  return LDNS_STATUS_ERR;
1572  }
1573  ldns_rr_list_deep_free(sigs_covered);
1574 
1575  rrset = ldns_pkt_rr_list_by_name_and_type(p, o, t,
1577  if (!rrset) {
1578  if (! s) {
1579  ldns_rr_list_deep_free(sigs);
1580  }
1581  return LDNS_STATUS_ERR;
1582  }
1583  return ldns_verify_time(rrset, sigs, k, check_time, good_keys);
1584 }
1585 
1588  ldns_rr_list *k, ldns_rr_list *s, ldns_rr_list *good_keys)
1589 {
1590  return ldns_pkt_verify_time(p, t, o, k, s, ldns_time(NULL), good_keys);
1591 }
1592 #endif /* HAVE_SSL */
1593 
1596 {
1597  size_t i;
1598  char *next_nsec_owner_str;
1599  ldns_rdf *next_nsec_owner_label;
1600  ldns_rdf *next_nsec_rdf;
1601  ldns_status status = LDNS_STATUS_OK;
1602 
1603  for (i = 0; i < ldns_rr_list_rr_count(nsec3_rrs); i++) {
1604  if (i == ldns_rr_list_rr_count(nsec3_rrs) - 1) {
1605  next_nsec_owner_label =
1607  0)), 0);
1608  next_nsec_owner_str = ldns_rdf2str(next_nsec_owner_label);
1609  if (next_nsec_owner_str[strlen(next_nsec_owner_str) - 1]
1610  == '.') {
1611  next_nsec_owner_str[strlen(next_nsec_owner_str) - 1]
1612  = '\0';
1613  }
1614  status = ldns_str2rdf_b32_ext(&next_nsec_rdf,
1615  next_nsec_owner_str);
1616  if (!ldns_rr_set_rdf(ldns_rr_list_rr(nsec3_rrs, i),
1617  next_nsec_rdf, 4)) {
1618  /* todo: error */
1619  }
1620 
1621  ldns_rdf_deep_free(next_nsec_owner_label);
1622  LDNS_FREE(next_nsec_owner_str);
1623  } else {
1624  next_nsec_owner_label =
1626  i + 1)),
1627  0);
1628  next_nsec_owner_str = ldns_rdf2str(next_nsec_owner_label);
1629  if (next_nsec_owner_str[strlen(next_nsec_owner_str) - 1]
1630  == '.') {
1631  next_nsec_owner_str[strlen(next_nsec_owner_str) - 1]
1632  = '\0';
1633  }
1634  status = ldns_str2rdf_b32_ext(&next_nsec_rdf,
1635  next_nsec_owner_str);
1636  ldns_rdf_deep_free(next_nsec_owner_label);
1637  LDNS_FREE(next_nsec_owner_str);
1638  if (!ldns_rr_set_rdf(ldns_rr_list_rr(nsec3_rrs, i),
1639  next_nsec_rdf, 4)) {
1640  /* todo: error */
1641  }
1642  }
1643  }
1644  return status;
1645 }
1646 
1647 int
1648 qsort_rr_compare_nsec3(const void *a, const void *b)
1649 {
1650  const ldns_rr *rr1 = * (const ldns_rr **) a;
1651  const ldns_rr *rr2 = * (const ldns_rr **) b;
1652  if (rr1 == NULL && rr2 == NULL) {
1653  return 0;
1654  }
1655  if (rr1 == NULL) {
1656  return -1;
1657  }
1658  if (rr2 == NULL) {
1659  return 1;
1660  }
1661  return ldns_rdf_compare(ldns_rr_owner(rr1), ldns_rr_owner(rr2));
1662 }
1663 
1664 void
1666 {
1667  qsort(unsorted->_rrs,
1668  ldns_rr_list_rr_count(unsorted),
1669  sizeof(ldns_rr *),
1671 }
1672 
1673 int
1675  , ATTR_UNUSED(void *n)
1676  )
1677 {
1679 }
1680 
1681 int
1683  , ATTR_UNUSED(void *n)
1684  )
1685 {
1687 }
1688 
1689 int
1691  , ATTR_UNUSED(void *n)
1692  )
1693 {
1695 }
1696 
1697 int
1699  , ATTR_UNUSED(void *n)
1700  )
1701 {
1703 }
1704 
1705 #ifdef HAVE_SSL
1706 ldns_rdf *
1708  const long sig_len)
1709 {
1710  ldns_rdf *sigdata_rdf;
1711  DSA_SIG *dsasig;
1712  unsigned char *dsasig_data = (unsigned char*)ldns_buffer_begin(sig);
1713  size_t byte_offset;
1714 
1715  dsasig = d2i_DSA_SIG(NULL,
1716  (const unsigned char **)&dsasig_data,
1717  sig_len);
1718  if (!dsasig) {
1719  DSA_SIG_free(dsasig);
1720  return NULL;
1721  }
1722 
1723  dsasig_data = LDNS_XMALLOC(unsigned char, 41);
1724  if(!dsasig_data) {
1725  DSA_SIG_free(dsasig);
1726  return NULL;
1727  }
1728  dsasig_data[0] = 0;
1729  byte_offset = (size_t) (20 - BN_num_bytes(dsasig->r));
1730  if (byte_offset > 20) {
1731  DSA_SIG_free(dsasig);
1732  LDNS_FREE(dsasig_data);
1733  return NULL;
1734  }
1735  memset(&dsasig_data[1], 0, byte_offset);
1736  BN_bn2bin(dsasig->r, &dsasig_data[1 + byte_offset]);
1737  byte_offset = (size_t) (20 - BN_num_bytes(dsasig->s));
1738  if (byte_offset > 20) {
1739  DSA_SIG_free(dsasig);
1740  LDNS_FREE(dsasig_data);
1741  return NULL;
1742  }
1743  memset(&dsasig_data[21], 0, byte_offset);
1744  BN_bn2bin(dsasig->s, &dsasig_data[21 + byte_offset]);
1745 
1746  sigdata_rdf = ldns_rdf_new(LDNS_RDF_TYPE_B64, 41, dsasig_data);
1747  if(!sigdata_rdf) {
1748  LDNS_FREE(dsasig_data);
1749  }
1750  DSA_SIG_free(dsasig);
1751 
1752  return sigdata_rdf;
1753 }
1754 
1757  const ldns_rdf *sig_rdf)
1758 {
1759  /* the EVP api wants the DER encoding of the signature... */
1760  BIGNUM *R, *S;
1761  DSA_SIG *dsasig;
1762  unsigned char *raw_sig = NULL;
1763  int raw_sig_len;
1764 
1765  if(ldns_rdf_size(sig_rdf) < 1 + 2*SHA_DIGEST_LENGTH)
1767  /* extract the R and S field from the sig buffer */
1768  R = BN_new();
1769  if(!R) return LDNS_STATUS_MEM_ERR;
1770  (void) BN_bin2bn((unsigned char *) ldns_rdf_data(sig_rdf) + 1,
1771  SHA_DIGEST_LENGTH, R);
1772  S = BN_new();
1773  if(!S) {
1774  BN_free(R);
1775  return LDNS_STATUS_MEM_ERR;
1776  }
1777  (void) BN_bin2bn((unsigned char *) ldns_rdf_data(sig_rdf) + 21,
1778  SHA_DIGEST_LENGTH, S);
1779 
1780  dsasig = DSA_SIG_new();
1781  if (!dsasig) {
1782  BN_free(R);
1783  BN_free(S);
1784  return LDNS_STATUS_MEM_ERR;
1785  }
1786 
1787  dsasig->r = R;
1788  dsasig->s = S;
1789 
1790  raw_sig_len = i2d_DSA_SIG(dsasig, &raw_sig);
1791  if (raw_sig_len < 0) {
1792  DSA_SIG_free(dsasig);
1793  free(raw_sig);
1794  return LDNS_STATUS_SSL_ERR;
1795  }
1796  if (ldns_buffer_reserve(target_buffer, (size_t) raw_sig_len)) {
1797  ldns_buffer_write(target_buffer, raw_sig, (size_t)raw_sig_len);
1798  }
1799 
1800  DSA_SIG_free(dsasig);
1801  free(raw_sig);
1802 
1803  return ldns_buffer_status(target_buffer);
1804 }
1805 
1806 #ifdef USE_ECDSA
1807 #ifndef S_SPLINT_S
1808 ldns_rdf *
1809 ldns_convert_ecdsa_rrsig_asn12rdf(const ldns_buffer *sig, const long sig_len)
1810 {
1811  ECDSA_SIG* ecdsa_sig;
1812  unsigned char *data = (unsigned char*)ldns_buffer_begin(sig);
1813  ldns_rdf* rdf;
1814  ecdsa_sig = d2i_ECDSA_SIG(NULL, (const unsigned char **)&data, sig_len);
1815  if(!ecdsa_sig) return NULL;
1816 
1817  /* "r | s". */
1818  data = LDNS_XMALLOC(unsigned char,
1819  BN_num_bytes(ecdsa_sig->r) + BN_num_bytes(ecdsa_sig->s));
1820  if(!data) {
1821  ECDSA_SIG_free(ecdsa_sig);
1822  return NULL;
1823  }
1824  BN_bn2bin(ecdsa_sig->r, data);
1825  BN_bn2bin(ecdsa_sig->s, data+BN_num_bytes(ecdsa_sig->r));
1826  rdf = ldns_rdf_new(LDNS_RDF_TYPE_B64, (size_t)(
1827  BN_num_bytes(ecdsa_sig->r) + BN_num_bytes(ecdsa_sig->s)), data);
1828  ECDSA_SIG_free(ecdsa_sig);
1829  return rdf;
1830 }
1831 
1834  const ldns_rdf *sig_rdf)
1835 {
1836  ECDSA_SIG* sig;
1837  int raw_sig_len;
1838  long bnsize = (long)ldns_rdf_size(sig_rdf) / 2;
1839  /* if too short, or not even length, do not bother */
1840  if(bnsize < 16 || (size_t)bnsize*2 != ldns_rdf_size(sig_rdf))
1841  return LDNS_STATUS_ERR;
1842 
1843  /* use the raw data to parse two evenly long BIGNUMs, "r | s". */
1844  sig = ECDSA_SIG_new();
1845  if(!sig) return LDNS_STATUS_MEM_ERR;
1846  sig->r = BN_bin2bn((const unsigned char*)ldns_rdf_data(sig_rdf),
1847  bnsize, sig->r);
1848  sig->s = BN_bin2bn((const unsigned char*)ldns_rdf_data(sig_rdf)+bnsize,
1849  bnsize, sig->s);
1850  if(!sig->r || !sig->s) {
1851  ECDSA_SIG_free(sig);
1852  return LDNS_STATUS_MEM_ERR;
1853  }
1854 
1855  raw_sig_len = i2d_ECDSA_SIG(sig, NULL);
1856  if (ldns_buffer_reserve(target_buffer, (size_t) raw_sig_len)) {
1857  unsigned char* pp = (unsigned char*)
1858  ldns_buffer_current(target_buffer);
1859  raw_sig_len = i2d_ECDSA_SIG(sig, &pp);
1860  ldns_buffer_skip(target_buffer, (ssize_t) raw_sig_len);
1861  }
1862  ECDSA_SIG_free(sig);
1863 
1864  return ldns_buffer_status(target_buffer);
1865 }
1866 
1867 #endif /* S_SPLINT_S */
1868 #endif /* USE_ECDSA */
1869 #endif /* HAVE_SSL */
ldns_rdf * ldns_rr_rdf(const ldns_rr *rr, size_t nr)
returns the rdata field member counter.
Definition: rr.c:873
implementation of buffers to ease operations
Definition: buffer.h:50
bool ldns_nsec_covers_name(const ldns_rr *nsec, const ldns_rdf *name)
Checks coverage of NSEC(3) RR name span Remember that nsec and name must both be in canonical form (i...
Definition: dnssec.c:1472
#define R(b, x)
Definition: sha2.c:191
ldns_rdf * ldns_rr_set_rdf(ldns_rr *rr, const ldns_rdf *f, size_t position)
sets a rdf member, it will be set on the position given.
Definition: rr.c:804
#define LDNS_SIGNATURE_LEAVE_ADD_NEW
return values for the old-signature callback
Definition: dnssec.h:47
void ldns_rdf_deep_free(ldns_rdf *rd)
frees a rdf structure and frees the data.
Definition: rdata.c:230
void ldns_rr_set_type(ldns_rr *rr, ldns_rr_type rr_type)
sets the type in the rr.
Definition: rr.c:792
uint8_t ldns_dname_label_count(const ldns_rdf *r)
count the number of labels inside a LDNS_RDF_DNAME type rdf.
Definition: dname.c:214
RSA * ldns_key_buf2rsa_raw(unsigned char *key, size_t len)
Like ldns_key_buf2rsa, but uses raw buffer.
Definition: dnssec.c:396
ldns_rr_type ldns_rdf2rr_type(const ldns_rdf *rd)
convert an rdf of type LDNS_RDF_TYPE_TYPE to an actual LDNS_RR_TYPE.
Definition: rr.c:2653
DNSSEC.
Definition: rr.h:173
b64 string
Definition: rdata.h:68
ldns_rr_list * ldns_pkt_rr_list_by_name_and_type(const ldns_pkt *packet, const ldns_rdf *ownername, ldns_rr_type type, ldns_pkt_section sec)
return all the rr with a specific type and type from a packet.
Definition: packet.c:320
int ldns_dname_compare(const ldns_rdf *dname1, const ldns_rdf *dname2)
Compares the two dname rdf&#39;s according to the algorithm for ordering in RFC4034 Section 6...
Definition: dname.c:356
ldns_rdf * ldns_native2rdf_int16(ldns_rdf_type type, uint16_t value)
returns the rdf containing the native uint16_t representation.
Definition: rdata.c:132
bool ldns_dnssec_pkt_has_rrsigs(const ldns_pkt *pkt)
Checks whether the packet contains rrsigs.
Definition: dnssec.c:198
uint16_t ldns_nsec3_iterations(const ldns_rr *nsec3_rr)
Returns the number of hash iterations used in the given NSEC3 RR.
Definition: dnssec.c:1258
uint8_t * ldns_nsec3_salt_data(const ldns_rr *nsec3_rr)
Returns the salt bytes used in the given NSEC3 RR.
Definition: dnssec.c:1295
ldns_rdf * ldns_nsec_get_bitmap(ldns_rr *nsec)
Returns the rdata field that contains the bitmap of the covered types of the given NSEC record...
Definition: dnssec.c:84
List or Set of Resource Records.
Definition: rr.h:327
ldns_status ldns_str2rdf_dname(ldns_rdf **d, const char *str)
convert a dname string into wireformat
Definition: str2host.c:311
ldns_rdf * ldns_nsec3_salt(const ldns_rr *nsec3_rr)
Returns the salt used in the given NSEC3 RR.
Definition: dnssec.c:1272
ldns_rr * ldns_dnssec_get_dnskey_for_rrsig(const ldns_rr *rrsig, const ldns_rr_list *rrs)
Returns the DNSKEY that corresponds to the given RRSIG rr from the list, if any.
Definition: dnssec.c:57
uint8_t ldns_rdf2native_int8(const ldns_rdf *rd)
returns the native uint8_t representation from the rdf.
Definition: rdata.c:70
ldns_dnssec_rrsets * rrsets
The rrsets for this name.
Definition: dnssec_zone.h:63
a RR type
Definition: rdata.h:74
#define LDNS_CALLOC(type, count)
Definition: util.h:53
#define LDNS_XMALLOC(type, count)
Definition: util.h:51
#define LDNS_MIN_BUFLEN
number of initial bytes in buffer of which we cannot tell the size before hand
Definition: buffer.h:33
size_t ldns_rdf_size(const ldns_rdf *rd)
returns the size of the rdf.
Definition: rdata.c:24
ldns_status ldns_convert_dsa_rrsig_rdf2asn1(ldns_buffer *target_buffer, const ldns_rdf *sig_rdf)
Converts the RRSIG signature RDF (in rfc2536 format) to a buffer with the signature in rfc2459 format...
Definition: dnssec.c:1756
void ldns_nsec3_add_param_rdfs(ldns_rr *rr, uint8_t algorithm, uint8_t flags, uint16_t iterations, uint8_t salt_length, uint8_t *salt)
Sets all the NSEC3 options.
Definition: dnssec.c:1073
ldns_status ldns_str2rdf_b32_ext(ldns_rdf **rd, const char *str)
convert the string with the b32 ext hex data into wireformat
Definition: str2host.c:607
enum ldns_enum_hash ldns_hash
Definition: keys.h:74
#define LDNS_SHA256_DIGEST_LENGTH
Definition: sha2.h:70
void ldns_rr_list_deep_free(ldns_rr_list *rr_list)
frees an rr_list structure and all rrs contained therein.
Definition: rr.c:984
void ldns_buffer_free(ldns_buffer *buffer)
frees the buffer.
Definition: buffer.c:137
ldns_rr_list * ldns_rr_list_subtype_by_rdf(ldns_rr_list *l, ldns_rdf *r, size_t pos)
Return the rr_list which matches the rdf at position field.
Definition: rr.c:1062
ldns_rr * ldns_rr_new_frm_type(ldns_rr_type t)
creates a new rr structure, based on the given type.
Definition: rr.c:42
ldns_rdf * ldns_rdf_clone(const ldns_rdf *rd)
clones a rdf structure.
Definition: rdata.c:222
void ldns_dname2canonical(const ldns_rdf *rd)
Put a dname into canonical fmt - ie.
Definition: dname.c:277
ldns_rdf * ldns_rr_rrsig_keytag(const ldns_rr *r)
returns the keytag of a LDNS_RR_TYPE_RRSIG RR
Definition: rr_functions.c:183
ldns_rdf * ldns_nsec3_hash_name_frm_nsec3(const ldns_rr *nsec, ldns_rdf *name)
Calculates the hashed name using the parameters of the given NSEC3 RR.
Definition: dnssec.c:1332
#define LDNS_MAX_PACKETLEN
Definition: packet.h:24
void ldns_rr_free(ldns_rr *rr)
frees an RR structure
Definition: rr.c:75
ldns_rdf * ldns_dname_left_chop(const ldns_rdf *d)
chop one label off the left side of a dname.
Definition: dname.c:189
ldns_status ldns_nsec_bitmap_set_type(ldns_rdf *bitmap, ldns_rr_type type)
Checks if RR type t is enumerated in the type bitmap rdf and sets the bit.
Definition: dnssec.c:1394
2535typecode
Definition: rr.h:131
unsigned char * ldns_sha256(unsigned char *data, unsigned int data_len, unsigned char *digest)
Convenience function to digest a fixed block of data at once.
Definition: sha2.c:620
ldns_rr_list * ldns_pkt_rr_list_by_type(const ldns_pkt *packet, ldns_rr_type type, ldns_pkt_section sec)
return all the rr with a specific type from a packet.
Definition: packet.c:284
ldns_status ldns_nsec_bitmap_clear_type(ldns_rdf *bitmap, ldns_rr_type type)
Checks if RR type t is enumerated in the type bitmap rdf and clears the bit.
Definition: dnssec.c:1432
Resource Record.
Definition: rr.h:299
void ldns_rdf_free(ldns_rdf *rd)
frees a rdf structure, leaving the data pointer intact.
Definition: rdata.c:241
ldns_status ldns_rdf2buffer_wire(ldns_buffer *buffer, const ldns_rdf *rdf)
Copies the rdata data to the buffer in wire format.
Definition: host2wire.c:36
Including this file will include all ldns files, and define some lookup tables.
ldns_rdf * ldns_dname_new_frm_str(const char *str)
creates a new dname rdf from a string.
Definition: dname.c:265
marks the start of a zone of authority
Definition: rr.h:93
ldns_rr_list * ldns_dnssec_pkt_get_rrsigs_for_name_and_type(const ldns_pkt *pkt, ldns_rdf *name, ldns_rr_type type)
Returns a ldns_rr_list containing the signatures covering the given name and type.
Definition: dnssec.c:217
int ldns_dnssec_rrsets_contains_type(ldns_dnssec_rrsets *rrsets, ldns_rr_type type)
returns whether a rrset of the given type is found in the rrsets.
Definition: dnssec.c:767
ldns_rr_list * ldns_dnssec_pkt_get_rrsigs_for_type(const ldns_pkt *pkt, ldns_rr_type type)
Returns a ldns_rr_list containing the signatures covering the given type.
Definition: dnssec.c:244
uint8_t ldns_nsec3_salt_length(const ldns_rr *nsec3_rr)
Returns the length of the salt used in the given NSEC3 RR.
Definition: dnssec.c:1284
uint16_t ldns_pkt_nscount(const ldns_pkt *packet)
Return the packet&#39;s ns count.
Definition: packet.c:111
uint8_t * ldns_rdf_data(const ldns_rdf *rd)
returns the data of the rdf.
Definition: rdata.c:38
ldns_rdf * ldns_nsec3_next_owner(const ldns_rr *nsec3_rr)
Returns the first label of the next ownername in the NSEC3 chain (ie.
Definition: dnssec.c:1312
ldns_rr * ldns_rr_list_rr(const ldns_rr_list *rr_list, size_t nr)
returns a specific rr of an rrlist.
Definition: rr.c:954
ldns_rr * ldns_create_nsec(ldns_rdf *cur_owner, ldns_rdf *next_owner, ldns_rr_list *rrs)
Create a NSEC record.
Definition: dnssec.c:924
void ldns_rr_set_class(ldns_rr *rr, ldns_rr_class rr_class)
sets the class in the rr.
Definition: rr.c:798
#define LDNS_SIGNATURE_REMOVE_NO_ADD
Definition: dnssec.h:50
16 bits
Definition: rdata.h:54
ldns_rr * ldns_dnssec_create_nsec(ldns_dnssec_name *from, ldns_dnssec_name *to, ldns_rr_type nsec_type)
Creates NSEC.
Definition: dnssec.c:781
#define ATTR_UNUSED(x)
Definition: common.h:67
uint16_t ldns_pkt_ancount(const ldns_pkt *packet)
Return the packet&#39;s an count.
Definition: packet.c:105
ldns_status ldns_pkt_verify_time(ldns_pkt *p, ldns_rr_type t, ldns_rdf *o, ldns_rr_list *k, ldns_rr_list *s, time_t check_time, ldns_rr_list *good_keys)
verify a packet
Definition: dnssec.c:1523
uint16_t ldns_rdf2native_int16(const ldns_rdf *rd)
returns the native uint16_t representation from the rdf.
Definition: rdata.c:84
int ldns_dnssec_default_delete_signatures(ldns_rr *sig __attribute__((unused)), void *n __attribute__((unused)))
Definition: dnssec.c:1690
ldns_rr * ldns_dnssec_create_nsec3(ldns_dnssec_name *from, ldns_dnssec_name *to, ldns_rdf *zone_name, uint8_t algorithm, uint8_t flags, uint16_t iterations, uint8_t salt_length, uint8_t *salt)
Creates NSEC3.
Definition: dnssec.c:835
#define LDNS_NSEC3_VARS_OPTOUT_MASK
Definition: rdata.h:40
ldns_status ldns_verify_time(ldns_rr_list *rrset, ldns_rr_list *rrsig, const ldns_rr_list *keys, time_t check_time, ldns_rr_list *good_keys)
Verifies a list of signatures for one rrset.
int ldns_key_EVP_load_gost_id(void)
Get the PKEY id for GOST, loads GOST into openssl as a side effect.
ldns_status ldns_dname_cat(ldns_rdf *rd1, ldns_rdf *rd2)
concatenates rd2 after rd1 (rd2 is copied, rd1 is modified)
Definition: dname.c:90
int ldns_dnssec_default_add_to_signatures(ldns_rr *sig __attribute__((unused)), void *n __attribute__((unused)))
Definition: dnssec.c:1674
bool ldns_nsec3_optout(const ldns_rr *nsec3_rr)
Returns true if the opt-out flag has been set in the given NSEC3 RR.
Definition: dnssec.c:1252
uint16_t ldns_calc_keytag(const ldns_rr *key)
calculates a keytag of a key for use in DNSSEC.
Definition: dnssec.c:271
ldns_status ldns_rr_rdata2buffer_wire(ldns_buffer *buffer, const ldns_rr *rr)
Converts an rr&#39;s rdata to wireformat, while excluding the ownername and all the stuff before the rdat...
Definition: host2wire.c:214
ldns_rdf * ldns_nsec3_hash_name(ldns_rdf *name, uint8_t algorithm, uint16_t iterations, uint8_t salt_length, uint8_t *salt)
Calculates the hashed name using the given parameters.
Definition: dnssec.c:974
RFC4034, RFC3658.
Definition: rr.h:167
DSA * ldns_key_buf2dsa(ldns_buffer *key)
converts a buffer holding key material to a DSA key in openssl.
Definition: dnssec.c:330
bool ldns_nsec_bitmap_covers_type(const ldns_rdf *bitmap, ldns_rr_type type)
Check if RR type t is enumerated and set in the RR type bitmap rdf.
Definition: dnssec.c:1357
hex string
Definition: rdata.h:70
ldns_rdf * ldns_nsec3_bitmap(const ldns_rr *nsec3_rr)
Returns the bitmap specifying the covered types of the given NSEC3 RR.
Definition: dnssec.c:1322
ldns_rdf_type ldns_rdf_get_type(const ldns_rdf *rd)
returns the type of the rdf.
Definition: rdata.c:31
DNS packet.
Definition: packet.h:233
uint16_t ldns_calc_keytag_raw(uint8_t *key, size_t keysize)
Calculates keytag of DNSSEC key, operates on wireformat rdata.
Definition: dnssec.c:301
DSA * ldns_key_buf2dsa_raw(unsigned char *key, size_t len)
Like ldns_key_buf2dsa, but uses raw buffer.
Definition: dnssec.c:337
void ldns_rr_set_owner(ldns_rr *rr, ldns_rdf *owner)
sets the owner in the rr structure.
Definition: rr.c:768
int ldns_digest_evp(unsigned char *data, unsigned int len, unsigned char *dest, const EVP_MD *md)
Utility function to calculate hash using generic EVP_MD pointer.
Definition: dnssec.c:455
ldns_rdf * ldns_dnssec_nsec3_closest_encloser(ldns_rdf *qname, ldns_rr_type qtype __attribute__((unused)), ldns_rr_list *nsec3s)
Definition: dnssec.c:97
#define LDNS_SIGNATURE_REMOVE_ADD_NEW
Definition: dnssec.h:49
void ldns_rdf_print(FILE *output, const ldns_rdf *rdf)
Prints the data in the rdata field to the given file stream (in presentation format) ...
Definition: host2str.c:2489
ldns_rr_type ldns_rr_get_type(const ldns_rr *rr)
returns the type of the rr.
Definition: rr.c:907
ldns_rr * ldns_dnssec_get_rrsig_for_name_and_type(const ldns_rdf *name, const ldns_rr_type type, const ldns_rr_list *rrs)
Returns the first RRSIG rr that corresponds to the rrset with the given name and type.
Definition: dnssec.c:29
ldns_rdf * ldns_rr_rrsig_typecovered(const ldns_rr *r)
returns the type covered of a LDNS_RR_TYPE_RRSIG rr
Definition: rr_functions.c:111
ldns_rr * ldns_create_nsec3(ldns_rdf *cur_owner, ldns_rdf *cur_zone, ldns_rr_list *rrs, uint8_t algorithm, uint8_t flags, uint16_t iterations, uint8_t salt_length, uint8_t *salt, bool emptynonterminal)
Definition: dnssec.c:1144
void ldns_rr_set_ttl(ldns_rr *rr, uint32_t ttl)
sets the ttl in the rr structure.
Definition: rr.c:780
enum ldns_enum_status ldns_status
Definition: error.h:131
ldns_rdf * ldns_rdf_new_frm_data(ldns_rdf_type type, size_t size, const void *data)
allocates a new rdf structure and fills it.
Definition: rdata.c:193
uint8_t ldns_nsec3_flags(const ldns_rr *nsec3_rr)
Returns flags field.
Definition: dnssec.c:1239
ldns_rdf * hashed_name
pointer to store the hashed name (only used when in an NSEC3 zone
Definition: dnssec_zone.h:85
ldns_buffer * ldns_buffer_new(size_t capacity)
creates a new buffer with the specified capacity.
Definition: buffer.c:16
This module contains base functions for DNSSEC operations (RFC4033 t/m RFC4035).
ldns_rdf * ldns_rdf_new(ldns_rdf_type type, size_t size, void *data)
allocates a new rdf structure and fills it.
Definition: rdata.c:179
ldns_rr ** _rrs
Definition: rr.h:331
RSA * ldns_key_buf2rsa(ldns_buffer *key)
converts a buffer holding key material to a RSA key in openssl.
Definition: dnssec.c:389
int ldns_b32_ntop_extended_hex(const uint8_t *src, size_t src_sz, char *dst, size_t dst_sz)
Definition: util.c:588
#define LDNS_RDF_SIZE_WORD
Definition: rdata.h:34
bool ldns_buffer_reserve(ldns_buffer *buffer, size_t amount)
ensures BUFFER can contain at least AMOUNT more bytes.
Definition: buffer.c:79
Definition: keys.h:69
int ldns_dnssec_default_leave_signatures(ldns_rr *sig __attribute__((unused)), void *n __attribute__((unused)))
Definition: dnssec.c:1682
ldns_rdf * ldns_rr_rrsig_signame(const ldns_rr *r)
returns the signers name of a LDNS_RR_TYPE_RRSIG RR
Definition: rr_functions.c:195
char * ldns_rdf2str(const ldns_rdf *rdf)
Converts the data in the rdata field to presentation format and returns that as a char *...
Definition: host2str.c:2371
bool ldns_rr_push_rdf(ldns_rr *rr, const ldns_rdf *f)
sets rd_field member, it will be placed in the next available spot.
Definition: rr.c:821
Resource record data field.
Definition: rdata.h:166
ldns_dnssec_rrsets * next
Definition: dnssec_zone.h:37
nsec3 hash salt
Definition: rdata.h:109
8 bits
Definition: rdata.h:52
ldns_rdf * ldns_rr_owner(const ldns_rr *rr)
returns the owner name of an rr structure.
Definition: rr.c:883
ldns_rr * ldns_rr_new(void)
creates a new rr structure.
Definition: rr.c:24
size_t ldns_rr_list_rr_count(const ldns_rr_list *rr_list)
returns the number of rr&#39;s in an rr_list.
Definition: rr.c:921
#define LDNS_SIGNATURE_LEAVE_NO_ADD
Definition: dnssec.h:48
enum ldns_enum_rr_type ldns_rr_type
Definition: rr.h:236
#define LDNS_FREE(ptr)
Definition: util.h:60
ldns_status ldns_convert_ecdsa_rrsig_rdf2asn1(ldns_buffer *target_buffer, const ldns_rdf *sig_rdf)
Converts the RRSIG signature RDF (from DNS) to a buffer with the signature in ASN1 format as openssl ...
Definition: dnssec.c:1833
ldns_status ldns_dnssec_chain_nsec3_list(ldns_rr_list *nsec3_rrs)
chains nsec3 list
Definition: dnssec.c:1595
ldns_rr_list * ldns_pkt_authority(const ldns_pkt *packet)
Return the packet&#39;s authority section.
Definition: packet.c:135
an authoritative name server
Definition: rr.h:85
ldns_rdf * ldns_dnssec_create_nsec_bitmap(ldns_rr_type rr_type_list[], size_t size, ldns_rr_type nsec_type)
Create the type bitmap for an NSEC(3) record.
Definition: dnssec.c:685
ldns_rdf * ldns_convert_ecdsa_rrsig_asn12rdf(const ldns_buffer *sig, const long sig_len)
Converts the ECDSA signature from ASN1 representation (as used by OpenSSL) to raw signature data as u...
Definition: dnssec.c:1809
ldns_rdf * ldns_dname_label(const ldns_rdf *rdf, uint8_t labelpos)
look inside the rdf and if it is an LDNS_RDF_TYPE_DNAME try and retrieve a specific label...
Definition: dname.c:556
const char * ldns_get_errorstr_by_id(ldns_status err)
look up a descriptive text by each error.
Definition: error.c:150
uint32_t ldns_rr_ttl(const ldns_rr *rr)
returns the ttl of an rr structure.
Definition: rr.c:895
ldns_rr_class ldns_rr_get_class(const ldns_rr *rr)
returns the class of the rr.
Definition: rr.c:913
int ldns_dnssec_default_replace_signatures(ldns_rr *sig __attribute__((unused)), void *n __attribute__((unused)))
Definition: dnssec.c:1698
used to get all non-question rrs from a packet
Definition: packet.h:280
ldns_rdf * ldns_dnssec_name_name(ldns_dnssec_name *name)
Returns the domain name of the given dnssec_name structure.
Definition: dnssec_zone.c:394
ldns_rr_list * ldns_pkt_answer(const ldns_pkt *packet)
Return the packet&#39;s answer section.
Definition: packet.c:129
int qsort_rr_compare_nsec3(const void *a, const void *b)
compare for nsec3 sort
Definition: dnssec.c:1648
unsigned char * ldns_sha1(unsigned char *data, unsigned int data_len, unsigned char *digest)
Convenience function to digest a fixed block of data at once.
Definition: sha1.c:170
ldns_status ldns_pkt_verify(ldns_pkt *p, ldns_rr_type t, ldns_rdf *o, ldns_rr_list *k, ldns_rr_list *s, ldns_rr_list *good_keys)
verify a packet
Definition: dnssec.c:1587
uint8_t ldns_nsec3_algorithm(const ldns_rr *nsec3_rr)
Returns the hash algorithm used in the given NSEC3 RR.
Definition: dnssec.c:1226
ldns_rdf * ldns_convert_dsa_rrsig_asn12rdf(const ldns_buffer *sig, const long sig_len)
Converts the DSA signature from ASN1 representation (RFC2459, as used by OpenSSL) to raw signature da...
Definition: dnssec.c:1707
void ldns_rr_list_sort_nsec3(ldns_rr_list *unsorted)
sort nsec3 list
Definition: dnssec.c:1665
int ldns_rdf_compare(const ldns_rdf *rd1, const ldns_rdf *rd2)
compares two rdf&#39;s on their wire formats.
Definition: rdata.c:642
#define LDNS_SHA1_DIGEST_LENGTH
Definition: sha1.h:9
ldns_rr * ldns_key_rr2ds(const ldns_rr *key, ldns_hash h)
returns a new DS rr that represents the given key rr.
Definition: dnssec.c:474