|
| HS071 () |
| Creates a new instance of HS071cpp. More...
|
|
boolean | get_scaling_parameters (double[] obj_scaling, int n, double[] x_scaling, int m, double[] g_scaling, boolean[] use_x_g_scaling) |
|
void | print (double[] x, String str) |
|
| Ipopt () |
| Creates a new NLP Solver using { DLLPATH} as path and { DLLNAME} as the DLL name. More...
|
|
| Ipopt (String path, String DLL) |
| Creates a NLP Solver for the given DLL file. More...
|
|
void | dispose () |
| Dispose of the natively allocated memory. More...
|
|
boolean | create (int n, int m, int nele_jac, int nele_hess, int index_style) |
| Create a new problem. More...
|
|
boolean | setIntegerOption (String keyword, int val) |
| Function for setting an integer option. More...
|
|
boolean | setNumericOption (String keyword, double val) |
| Function for setting a number option. More...
|
|
boolean | setStringOption (String keyword, String val) |
| Function for setting a string option. More...
|
|
int | OptimizeNLP () |
| This function actually solve the problem. More...
|
|
double[] | getVariableValues () |
| Gives primal variable values at final point. More...
|
|
double | getObjectiveValue () |
| Gives objective function value at final point. More...
|
|
int | getStatus () |
| Gives Ipopt status of last OptimizeNLP call. More...
|
|
double[] | getConstraintValues () |
| Gives constraint function values at final point. More...
|
|
double[] | getConstraintMultipliers () |
| Gives constraint dual multipliers in final point. More...
|
|
double[] | getLowerBoundMultipliers () |
| Gives dual multipliers for variable lower bounds in final point. More...
|
|
double[] | getUpperBoundMultipliers () |
| Gives dual multipliers for variable upper bounds in final point. More...
|
|
boolean | get_scaling_parameters (double[] obj_scaling, int n, double[] x_scaling, int m, double[] g_scaling, boolean[] use_x_g_scaling) |
| If you using_scaling_parameters = true, please overload this method,. More...
|
|
int | get_number_of_nonlinear_variables () |
| When LBFGS hessian approximation is used, this method should be overloaded. More...
|
|
boolean | get_list_of_nonlinear_variables (int num_nonlin_vars, int[] pos_nonlin_vars) |
| When LBFGS hessian approximation is used, this method should be overloaded. More...
|
|
|
boolean | get_bounds_info (int n, double[] x_L, double[] x_U, int m, double[] g_L, double[] g_U) |
| Callback function for variable bounds and constraint sides. More...
|
|
boolean | get_starting_point (int n, boolean init_x, double[] x, boolean init_z, double[] z_L, double[] z_U, int m, boolean init_lambda, double[] lambda) |
| Callback function for the starting point. More...
|
|
boolean | eval_f (int n, double[] x, boolean new_x, double[] obj_value) |
|
boolean | eval_grad_f (int n, double[] x, boolean new_x, double[] grad_f) |
|
boolean | eval_g (int n, double[] x, boolean new_x, int m, double[] g) |
|
boolean | eval_jac_g (int n, double[] x, boolean new_x, int m, int nele_jac, int[] iRow, int[] jCol, double[] values) |
|
boolean | eval_h (int n, double[] x, boolean new_x, double obj_factor, int m, double[] lambda, boolean new_lambda, int nele_hess, int[] iRow, int[] jCol, double[] values) |
|
abstract boolean | get_bounds_info (int n, double[] x_l, double[] x_u, int m, double[] g_l, double[] g_u) |
| Callback function for the variable bounds and constraint sides. More...
|
|
abstract boolean | get_starting_point (int n, boolean init_x, double[] x, boolean init_z, double[] z_L, double[] z_U, int m, boolean init_lambda, double[] lambda) |
| Callback function for retrieving a starting point. More...
|
|
abstract boolean | eval_f (int n, double[] x, boolean new_x, double[] obj_value) |
| Callback function for the objective function. More...
|
|
abstract boolean | eval_grad_f (int n, double[] x, boolean new_x, double[] grad_f) |
| Callback function for the objective function gradient. More...
|
|
abstract boolean | eval_g (int n, double[] x, boolean new_x, int m, double[] g) |
| Callback function for the constraints. More...
|
|
abstract boolean | eval_jac_g (int n, double[] x, boolean new_x, int m, int nele_jac, int[] iRow, int[] jCol, double[] values) |
| Callback function for the constraints Jacobian. More...
|
|
abstract boolean | eval_h (int n, double[] x, boolean new_x, double obj_factor, int m, double[] lambda, boolean new_lambda, int nele_hess, int[] iRow, int[] jCol, double[] values) |
| Callback function for the hessian. More...
|
|
void | finalize () throws Throwable |
|
Java example for interfacing with IPOPT.
HS071 implements a Java example of problem 71 of the Hock-Schittkowsky test suite.
The optimal solution is x = (1.00000000, 4.74299963, 3.82114998, 1.37940829).
This code was based on same problem of the Ipopt distribution.
- Author
- Rafael de Pelegrini Soares, Tong Kewei
Definition at line 24 of file HS071.java.