GeographicLib  1.43
TransverseMercatorExact.hpp
Go to the documentation of this file.
1 /**
2  * \file TransverseMercatorExact.hpp
3  * \brief Header for GeographicLib::TransverseMercatorExact class
4  *
5  * Copyright (c) Charles Karney (2008-2015) <charles@karney.com> and licensed
6  * under the MIT/X11 License. For more information, see
7  * http://geographiclib.sourceforge.net/
8  **********************************************************************/
9 
10 #if !defined(GEOGRAPHICLIB_TRANSVERSEMERCATOREXACT_HPP)
11 #define GEOGRAPHICLIB_TRANSVERSEMERCATOREXACT_HPP 1
12 
15 
16 namespace GeographicLib {
17 
18  /**
19  * \brief An exact implementation of the transverse Mercator projection
20  *
21  * Implementation of the Transverse Mercator Projection given in
22  * - L. P. Lee,
23  * <a href="https://dx.doi.org/10.3138/X687-1574-4325-WM62"> Conformal
24  * Projections Based On Jacobian Elliptic Functions</a>, Part V of
25  * Conformal Projections Based on Elliptic Functions,
26  * (B. V. Gutsell, Toronto, 1976), 128pp.,
27  * ISBN: 0919870163
28  * (also appeared as:
29  * Monograph 16, Suppl. No. 1 to Canadian Cartographer, Vol 13).
30  * - C. F. F. Karney,
31  * <a href="https://dx.doi.org/10.1007/s00190-011-0445-3">
32  * Transverse Mercator with an accuracy of a few nanometers,</a>
33  * J. Geodesy 85(8), 475--485 (Aug. 2011);
34  * preprint
35  * <a href="http://arxiv.org/abs/1002.1417">arXiv:1002.1417</a>.
36  *
37  * Lee gives the correct results for forward and reverse transformations
38  * subject to the branch cut rules (see the description of the \e extendp
39  * argument to the constructor). The maximum error is about 8 nm (8
40  * nanometers), ground distance, for the forward and reverse transformations.
41  * The error in the convergence is 2 &times; 10<sup>&minus;15</sup>&quot;,
42  * the relative error in the scale is 7 &times; 10<sup>&minus;12</sup>%%.
43  * See Sec. 3 of
44  * <a href="http://arxiv.org/abs/1002.1417">arXiv:1002.1417</a> for details.
45  * The method is "exact" in the sense that the errors are close to the
46  * round-off limit and that no changes are needed in the algorithms for them
47  * to be used with reals of a higher precision. Thus the errors using long
48  * double (with a 64-bit fraction) are about 2000 times smaller than using
49  * double (with a 53-bit fraction).
50  *
51  * This algorithm is about 4.5 times slower than the 6th-order Kr&uuml;ger
52  * method, TransverseMercator, taking about 11 us for a combined forward and
53  * reverse projection on a 2.66 GHz Intel machine (g++, version 4.3.0, -O3).
54  *
55  * The ellipsoid parameters and the central scale are set in the constructor.
56  * The central meridian (which is a trivial shift of the longitude) is
57  * specified as the \e lon0 argument of the TransverseMercatorExact::Forward
58  * and TransverseMercatorExact::Reverse functions. The latitude of origin is
59  * taken to be the equator. See the documentation on TransverseMercator for
60  * how to include a false easting, false northing, or a latitude of origin.
61  *
62  * See <a href="http://geographiclib.sourceforge.net/tm-grid.kmz"
63  * type="application/vnd.google-earth.kmz"> tm-grid.kmz</a>, for an
64  * illustration of the transverse Mercator grid in Google Earth.
65  *
66  * See TransverseMercatorExact.cpp for more information on the
67  * implementation.
68  *
69  * See \ref transversemercator for a discussion of this projection.
70  *
71  * Example of use:
72  * \include example-TransverseMercatorExact.cpp
73  *
74  * <a href="TransverseMercatorProj.1.html">TransverseMercatorProj</a> is a
75  * command-line utility providing access to the functionality of
76  * TransverseMercator and TransverseMercatorExact.
77  **********************************************************************/
78 
80  private:
81  typedef Math::real real;
82  static const int numit_ = 10;
83  real tol_, tol1_, tol2_, taytol_;
84  real _a, _f, _k0, _mu, _mv, _e;
85  bool _extendp;
86  EllipticFunction _Eu, _Ev;
87  static inline real overflow() {
88  // Overflow value s.t. atan(overflow_) = pi/2
89  static const real
90  overflow = 1 / Math::sq(std::numeric_limits<real>::epsilon());
91  return overflow;
92  }
93 
94  void zeta(real u, real snu, real cnu, real dnu,
95  real v, real snv, real cnv, real dnv,
96  real& taup, real& lam) const;
97 
98  void dwdzeta(real u, real snu, real cnu, real dnu,
99  real v, real snv, real cnv, real dnv,
100  real& du, real& dv) const;
101 
102  bool zetainv0(real psi, real lam, real& u, real& v) const;
103  void zetainv(real taup, real lam, real& u, real& v) const;
104 
105  void sigma(real u, real snu, real cnu, real dnu,
106  real v, real snv, real cnv, real dnv,
107  real& xi, real& eta) const;
108 
109  void dwdsigma(real u, real snu, real cnu, real dnu,
110  real v, real snv, real cnv, real dnv,
111  real& du, real& dv) const;
112 
113  bool sigmainv0(real xi, real eta, real& u, real& v) const;
114  void sigmainv(real xi, real eta, real& u, real& v) const;
115 
116  void Scale(real tau, real lam,
117  real snu, real cnu, real dnu,
118  real snv, real cnv, real dnv,
119  real& gamma, real& k) const;
120 
121  public:
122 
123  /**
124  * Constructor for a ellipsoid with
125  *
126  * @param[in] a equatorial radius (meters).
127  * @param[in] f flattening of ellipsoid. If \e f &gt; 1, set flattening
128  * to 1/\e f.
129  * @param[in] k0 central scale factor.
130  * @param[in] extendp use extended domain.
131  * @exception GeographicErr if \e a, \e f, or \e k0 is not positive.
132  *
133  * The transverse Mercator projection has a branch point singularity at \e
134  * lat = 0 and \e lon &minus; \e lon0 = 90 (1 &minus; \e e) or (for
135  * TransverseMercatorExact::UTM) x = 18381 km, y = 0m. The \e extendp
136  * argument governs where the branch cut is placed. With \e extendp =
137  * false, the "standard" convention is followed, namely the cut is placed
138  * along \e x > 18381 km, \e y = 0m. Forward can be called with any \e lat
139  * and \e lon then produces the transformation shown in Lee, Fig 46.
140  * Reverse analytically continues this in the &plusmn; \e x direction. As
141  * a consequence, Reverse may map multiple points to the same geographic
142  * location; for example, for TransverseMercatorExact::UTM, \e x =
143  * 22051449.037349 m, \e y = &minus;7131237.022729 m and \e x =
144  * 29735142.378357 m, \e y = 4235043.607933 m both map to \e lat =
145  * &minus;2&deg;, \e lon = 88&deg;.
146  *
147  * With \e extendp = true, the branch cut is moved to the lower left
148  * quadrant. The various symmetries of the transverse Mercator projection
149  * can be used to explore the projection on any sheet. In this mode the
150  * domains of \e lat, \e lon, \e x, and \e y are restricted to
151  * - the union of
152  * - \e lat in [0, 90] and \e lon &minus; \e lon0 in [0, 90]
153  * - \e lat in (-90, 0] and \e lon &minus; \e lon0 in [90 (1 &minus; \e
154  e), 90]
155  * - the union of
156  * - <i>x</i>/(\e k0 \e a) in [0, &infin;) and
157  * <i>y</i>/(\e k0 \e a) in [0, E(<i>e</i><sup>2</sup>)]
158  * - <i>x</i>/(\e k0 \e a) in [K(1 &minus; <i>e</i><sup>2</sup>) &minus;
159  * E(1 &minus; <i>e</i><sup>2</sup>), &infin;) and <i>y</i>/(\e k0 \e
160  * a) in (&minus;&infin;, 0]
161  * .
162  * See Sec. 5 of
163  * <a href="http://arxiv.org/abs/1002.1417">arXiv:1002.1417</a> for a full
164  * discussion of the treatment of the branch cut.
165  *
166  * The method will work for all ellipsoids used in terrestrial geodesy.
167  * The method cannot be applied directly to the case of a sphere (\e f = 0)
168  * because some the constants characterizing this method diverge in that
169  * limit, and in practice, \e f should be larger than about
170  * numeric_limits<real>::epsilon(). However, TransverseMercator treats the
171  * sphere exactly.
172  **********************************************************************/
173  TransverseMercatorExact(real a, real f, real k0, bool extendp = false);
174 
175  /**
176  * Forward projection, from geographic to transverse Mercator.
177  *
178  * @param[in] lon0 central meridian of the projection (degrees).
179  * @param[in] lat latitude of point (degrees).
180  * @param[in] lon longitude of point (degrees).
181  * @param[out] x easting of point (meters).
182  * @param[out] y northing of point (meters).
183  * @param[out] gamma meridian convergence at point (degrees).
184  * @param[out] k scale of projection at point.
185  *
186  * No false easting or northing is added. \e lat should be in the range
187  * [&minus;90&deg;, 90&deg;]; \e lon and \e lon0 should be in the
188  * range [&minus;540&deg;, 540&deg;).
189  **********************************************************************/
190  void Forward(real lon0, real lat, real lon,
191  real& x, real& y, real& gamma, real& k) const;
192 
193  /**
194  * Reverse projection, from transverse Mercator to geographic.
195  *
196  * @param[in] lon0 central meridian of the projection (degrees).
197  * @param[in] x easting of point (meters).
198  * @param[in] y northing of point (meters).
199  * @param[out] lat latitude of point (degrees).
200  * @param[out] lon longitude of point (degrees).
201  * @param[out] gamma meridian convergence at point (degrees).
202  * @param[out] k scale of projection at point.
203  *
204  * No false easting or northing is added. \e lon0 should be in the range
205  * [&minus;540&deg;, 540&deg;). The value of \e lon returned is in
206  * the range [&minus;180&deg;, 180&deg;).
207  **********************************************************************/
208  void Reverse(real lon0, real x, real y,
209  real& lat, real& lon, real& gamma, real& k) const;
210 
211  /**
212  * TransverseMercatorExact::Forward without returning the convergence and
213  * scale.
214  **********************************************************************/
215  void Forward(real lon0, real lat, real lon,
216  real& x, real& y) const {
217  real gamma, k;
218  Forward(lon0, lat, lon, x, y, gamma, k);
219  }
220 
221  /**
222  * TransverseMercatorExact::Reverse without returning the convergence and
223  * scale.
224  **********************************************************************/
225  void Reverse(real lon0, real x, real y,
226  real& lat, real& lon) const {
227  real gamma, k;
228  Reverse(lon0, x, y, lat, lon, gamma, k);
229  }
230 
231  /** \name Inspector functions
232  **********************************************************************/
233  ///@{
234  /**
235  * @return \e a the equatorial radius of the ellipsoid (meters). This is
236  * the value used in the constructor.
237  **********************************************************************/
238  Math::real MajorRadius() const { return _a; }
239 
240  /**
241  * @return \e f the flattening of the ellipsoid. This is the value used in
242  * the constructor.
243  **********************************************************************/
244  Math::real Flattening() const { return _f; }
245 
246  /// \cond SKIP
247  /**
248  * <b>DEPRECATED</b>
249  * @return \e r the inverse flattening of the ellipsoid.
250  **********************************************************************/
251  Math::real InverseFlattening() const { return 1/_f; }
252  /// \endcond
253 
254  /**
255  * @return \e k0 central scale for the projection. This is the value of \e
256  * k0 used in the constructor and is the scale on the central meridian.
257  **********************************************************************/
258  Math::real CentralScale() const { return _k0; }
259  ///@}
260 
261  /**
262  * A global instantiation of TransverseMercatorExact with the WGS84
263  * ellipsoid and the UTM scale factor. However, unlike UTM, no false
264  * easting or northing is added.
265  **********************************************************************/
266  static const TransverseMercatorExact& UTM();
267  };
268 
269 } // namespace GeographicLib
270 
271 #endif // GEOGRAPHICLIB_TRANSVERSEMERCATOREXACT_HPP
#define GEOGRAPHICLIB_EXPORT
Definition: Constants.hpp:90
An exact implementation of the transverse Mercator projection.
GeographicLib::Math::real real
Definition: GeodSolve.cpp:32
Elliptic integrals and functions.
void Reverse(real lon0, real x, real y, real &lat, real &lon) const
static T sq(T x)
Definition: Math.hpp:244
Namespace for GeographicLib.
Definition: Accumulator.cpp:12
Header for GeographicLib::EllipticFunction class.
void Forward(real lon0, real lat, real lon, real &x, real &y) const
Header for GeographicLib::Constants class.