Safe Haskell | Safe-Inferred |
---|---|
Language | Haskell98 |
Test.QuickCheck.Arbitrary
Contents
- class Arbitrary a where
- class CoArbitrary a where
- coarbitrary :: a -> Gen c -> Gen c
- arbitrarySizedIntegral :: Num a => Gen a
- arbitraryBoundedIntegral :: (Bounded a, Integral a) => Gen a
- arbitrarySizedBoundedIntegral :: (Bounded a, Integral a) => Gen a
- arbitrarySizedFractional :: Fractional a => Gen a
- arbitraryBoundedRandom :: (Bounded a, Random a) => Gen a
- arbitraryBoundedEnum :: (Bounded a, Enum a) => Gen a
- shrinkNothing :: a -> [a]
- shrinkList :: (a -> [a]) -> [a] -> [[a]]
- shrinkIntegral :: Integral a => a -> [a]
- shrinkRealFrac :: RealFrac a => a -> [a]
- (><) :: (Gen a -> Gen a) -> (Gen a -> Gen a) -> Gen a -> Gen a
- coarbitraryIntegral :: Integral a => a -> Gen b -> Gen b
- coarbitraryReal :: Real a => a -> Gen b -> Gen b
- coarbitraryShow :: Show a => a -> Gen b -> Gen b
- coarbitraryEnum :: Enum a => a -> Gen b -> Gen b
- vector :: Arbitrary a => Int -> Gen [a]
- orderedList :: (Ord a, Arbitrary a) => Gen [a]
Arbitrary and CoArbitrary classes
class Arbitrary a where Source
Random generation and shrinking of values.
Minimal complete definition
Nothing
Methods
A generator for values of the given type.
Produces a (possibly) empty list of all the possible immediate shrinks of the given value.
Instances
class CoArbitrary a where Source
Used for random generation of functions.
Methods
coarbitrary :: a -> Gen c -> Gen c Source
Used to generate a function of type a -> c
. The implementation
should use the first argument to perturb the random generator
given as the second argument. the returned generator
is then used to generate the function result.
You can often use variant
and ><
to implement
coarbitrary
.
Instances
Helper functions for implementing arbitrary
arbitrarySizedIntegral :: Num a => Gen a Source
Generates an integral number. The number can be positive or negative and its maximum absolute value depends on the size parameter.
arbitraryBoundedIntegral :: (Bounded a, Integral a) => Gen a Source
Generates an integral number. The number is chosen uniformly from
the entire range of the type. You may want to use
arbitrarySizedBoundedIntegral
instead.
arbitrarySizedBoundedIntegral :: (Bounded a, Integral a) => Gen a Source
Generates an integral number from a bounded domain. The number is chosen from the entire range of the type, but small numbers are generated more often than big numbers. Inspired by demands from Phil Wadler.
arbitrarySizedFractional :: Fractional a => Gen a Source
Generates a fractional number. The number can be positive or negative and its maximum absolute value depends on the size parameter.
arbitraryBoundedRandom :: (Bounded a, Random a) => Gen a Source
Generates an element of a bounded type. The element is chosen from the entire range of the type.
arbitraryBoundedEnum :: (Bounded a, Enum a) => Gen a Source
Generates an element of a bounded enumeration.
Helper functions for implementing shrink
shrinkNothing :: a -> [a] Source
Returns no shrinking alternatives.
shrinkList :: (a -> [a]) -> [a] -> [[a]] Source
shrinkIntegral :: Integral a => a -> [a] Source
Shrink an integral number.
shrinkRealFrac :: RealFrac a => a -> [a] Source
Shrink a fraction.
Helper functions for implementing coarbitrary
(><) :: (Gen a -> Gen a) -> (Gen a -> Gen a) -> Gen a -> Gen a Source
Combine two generator perturbing functions, for example the
results of calls to variant
or coarbitrary
.
coarbitraryIntegral :: Integral a => a -> Gen b -> Gen b Source
A coarbitrary
implementation for integral numbers.
coarbitraryReal :: Real a => a -> Gen b -> Gen b Source
A coarbitrary
implementation for real numbers.
coarbitraryShow :: Show a => a -> Gen b -> Gen b Source
coarbitrary
helper for lazy people :-).
coarbitraryEnum :: Enum a => a -> Gen b -> Gen b Source
A coarbitrary
implementation for enums.
Generators which use arbitrary
orderedList :: (Ord a, Arbitrary a) => Gen [a] Source
Generates an ordered list of a given length.