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Abstract

The AST library provides a comprehensive range of facilities for attaching world coordinate
systems to astronomical data, for retrieving and interpreting that information in a variety of
formats, including FITS-WCS, and for generating graphical output based on it.

This programmer’s manual should be of interest to anyone writing astronomical applications
which need to manipulate coordinate system data, especially celestial or spectral coordinate
systems. AST is portable and environment-independent.
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AST
A Library for Handling
World Coordinate Systems
in Astronomy

V8.0

This is the C version of this document.
For the Fortran version, please see SUN/210.

1 Introduction

Welcome to the AST library. If you are writing software for astronomy and need to use celestial
coordinates (e.g. RA and Dec), spectral coordinates (e.g. wavelength, frequency, etc.), or other
coordinate system information, then this library should be of interest. It provides solutions for
most of the problems you will meet and allows you to write robust and flexible software. It is
able to read and write WCS information in a variety of formats, including FITS-WCS.

1.1 What Problems Does AST Tackle?

Here are some of the main problems you may face when handling world coordinate system
(WCS) information and the solutions that AST provides:

1. The Variety of Coordinate Systems

Astronomers use a wide range of differing coordinate systems to describe positions within
a variety of physical domains. For instance, there are a large number of celestial coordinate
systems in use within astronomy to describe positions on the sky. Understanding these,
and knowing how to convert coordinates between them, can require considerable expertise.
It can also be difficult to decide which of them your software should support. The same
applies to coordinate systems describing other domains, such as position within an electro-
magnetic spectrum.

Solution. AST has built-in knowledge of many coordinate systems and allows you to
convert freely between them without specialist knowledge. This avoids the need to embed
details of specific coordinate systems in your software. You also benefit automatically
when new coordinate systems are added to AST.
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2. Storing and Retrieving WCS Information
Storing coordinate system information in astronomical datasets and retrieving it later
can present a considerable challenge. Typically, it requires knowledge of rather complex
conventions (e.g. FITS) which are low-level, often mis-interpreted and may be subject to
change. Exchanging information with other software systems is further complicated by
the number of different conventions in use.

Solution. AST combines a unifying high-level description of WCS information with the
ability to save and restore this using a variety of formats. Details of the formats, which
include FITS, are handled internally by AST. This frees you from the need to understand
them or embed the details in your software. Again, you benefit automatically when new
formats are added to AST.

3. Generating Graphical Output
Producing graphical displays involving curvilinear coordinate systems, such as celestial
coordinate grids, can be complicated. Particular difficulties arise when handling large
areas of sky, the polar regions and discontinuous (e.g. segmented) sky projections. Even
just numbering and labelling curvilinear axes is rarely straightforward.

Solution. AST provides plotting facilities especially designed for use with curvilinear
coordinate systems. These include the plotting of axes and complete labelled coordinate
grids. A large number of options are provided for tailoring the output to your specific
needs. Three dimensional coordinate grids can also be produced.

4. Aligning Data from Different Sources
One of the main uses of coordinate systems is to facilitate the inter-comparison of data
from different sources. A typical use might be to plot (say) radio contours over an optical
image. In practice, however, different celestial coordinate systems may have been used,
making accurate alignment far from simple.

Solution AST provides a one-step method of aligning datasets, searching for all possible
intermediate coordinate systems. This makes it simple to directly inter-relate the pixel
coordinates of different datasets.

5. Handling Different Types of Coordinate System
Not all coordinate systems used in astronomy are celestial ones, so if you are writing
general-purpose software such as (say) a display tool, you may also need to handle axes
representing wavelength, distance, time or whatever else comes along. Obviously, you
would prefer not to handle each one as a special case.

Solution AST uses the same flexible high-level model to describe all types of coordinate
system. This allows you to write software that handles different kinds of coordinate axis
without introducing special cases.

1.2 Other Design Objectives

As well as its scientific objectives, the AST library’s design includes a number of technical
criteria intended to make it applicable to as wide a range of projects as possible. The main
considerations are described here:
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1. Minimum Software Dependencies. The AST library depends on no other other soft-

Warel .

2. Environment Independence. AST is designed so that it can operate in a variety of
“programming environments” and is not tied to any particular one. To allow this, it uses
simple, flexible interfaces to obtain the following services:

e Data Storage. Data I/O operations are based on text and/or FITS headers. This
makes it easy to interface to a wide variety of astronomical data formats in a machine-
independent way.

e Graphics. Graphical output is produced wvia a simple generic graphics interface,
which may easily be re-implemented over different graphics systems. AST pro-
vides a default implementation based on the widely-used PGPLOT graphics system
(SUN/15).

e Error Handling. Error messages are written to standard error by default, but go
through a simple generic interface similar to that used for graphics (above). This
permits error message delivery via other routes when necessary (e.g. in a graphical
interface).

3. Multiple Language Support. AST has been designed to be called from more than
one language. Both C and Fortran interfaces are available (see SUN/210 for the Fortran
version) and use from C++ is also straightforward if the C interface is included using:

extern "C" {
#include "ast.h"

3

A JNI interface (known as “JNIAST” - see http://www.starlink.ac.uk/jniast/) has also
been developed by Starlink which allows AST to be used from Java.

4. Object Oriented Design. AST uses “object oriented” techniques internally in order
to provide a flexible and easily-extended programming model. A fairly traditional call-
ing interface is provided, however, so that the library’s facilities are easily accessible to
programmers using C and Fortran.

5. Portability. AST is implemented entirely in ANSI standard C and, when called wvia its
C interface, makes no explicit use of any machine-dependent facilities.

The Fortran interface is, unavoidably, machine dependent. However, the potential for
problems has been minimised by encapsulating the interface layer in a compact set of C

macros which facilitate its transfer to other platforms. No Fortran compiler is needed to
build the library.

Currently, AST is supported by Starlink on PC Linux, Sun Solaris and Tru64 Unix (for-
merly DEC UNIX) platforms.

Tt comes with bundled copies of the ERFA and Starlink PAL libraries which are built at the same time as
the other AST internal libraries. Alternatively, external PAL and ERFA libraries may be used by specifying the
“--with-external_pal” option when configuring AST
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1.3 What Does “AST” Stand For?

The library name “AST” stands for “ASTrometry Library”. The name arose when it was thought
that knowledge of “astrometry” (i.e. celestial coordinate systems) would form the bulk of the
library. In fact, it turns out that astrometry forms only a minor component, but the name AST
has stuck.



2 Overview of AST Concepts

This section presents a brief overview of AST concepts. It is intended as a basic orientation
course before you move on to the more technical considerations in subsequent sections.

2.1 Relationships Between Coordinate Systems

The relationships between coordinate systems are represented in AST by Objects called Map-
pings. A Mapping does not represent a coordinate system itself, but merely the process by which
you move from one coordinate system to another related one.

A convenient picture of a Mapping is as a “black box” (Figure 1) into which you can feed
sets of coordinates.  For each set you feed in, the Mapping returns a corresponding set of

Forward
 ———
Input . Output
Coordinates A Mappmg Coordinates
-
Inverse

Figure 1: A Mapping viewed as a “black box” for transforming coordinates.

transformed coordinates. Since each set of coordinates represents a point in a coordinate space,
the Mapping acts to inter-relate corresponding positions in the two spaces, although what these
spaces represent is unspecified. Notice that a Mapping need not have the same number of input
and output coordinates. That is, the two coordinate spaces which it inter-relates need not have
the same number of dimensions.

In many cases, the transformation can, in principle, be performed in either direction: either
from the input coordinate space to the output, or vice versa. The first of these is termed the
forward transformation and the other the inverse transformation.

Further reading: For a more complete discussion of Mappings, see §5.

2.2 Mappings Available

The basic concept of a Mapping (§2.1) is rather generic and obviously it is necessary to have
specific Mappings that implement specific relationships between coordinate systems. AST pro-
vides a range of these, to perform transformations such as the following and, where appropriate,
their inverses:

e Conversions between various celestial coordinate systems (the SlaMap).

e Conversions between various spectral coordinate systems (the SpecMap and GrismMap).
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-

CmpMap

*—>o— >
Mapping A Mapping B
——»o—>»

o

Figure 2: A CmpMap (compound Mapping) composed of two component Mappings joined in
series. The output coordinates of the first Mapping feed into the input coordinates of the second
one, so that the whole entity behaves like a single Mapping.

e Conversions between various time systems (the TimeMap).

e Conversion between 2-dimensional spherical celestial coordinates (longitude and latitude)
and a 3-dimensional vectorial positions (the SphMap).

e Various projections of the celestial sphere on to 2-dimensional coordinate spaces—i.e. map
projections (the DssMap and WesMap).

e Permutation, introduction and elimination of coordinates (the PermMap).

e Various linear coordinate transformations (the MatrixMap, WinMap, ShiftMap and ZoomMap).
e General N-dimensional polynomial transformations (the PolyMap).

e Lookup tables (the LutMap).

e General-purpose transformations expressed using arithmetic operations and functions sim-
ilar to those available in C (the MathMap).

e Transformations for internal use within a program, based on private transformation func-
tions which you write yourself in C (the IntraMap).

Further reading: For a more complete description of each of the Mappings mentioned above,
see its entry in Appendix D. In addition, see the discussion of the PermMap in §5.10, the
UnitMap in §5.9 and the IntraMap in §20. The ZoomMap is used as an example throughout §4.

2.3 Compound Mappings

The Mappings described in §2.2 provide a set of basic building blocks from which more complex
Mappings may be constructed. The key to doing this is a type of Mapping called a CmpMap, or
compound Mapping. A CmpMap’s role is, in principle, very simple: it allows any other pair of
Mappings to be joined together into a single entity which behaves as if it were a single Mapping.
A CmpMap is therefore a container for another pair of Mappings.

A pair of Mappings may be combined using a CmpMap in either of two ways. The first of these,
in series, is illustrated in Figure 2.  Here, the transformations implemented by each component
Mapping are performed one after the other, with the output from the first Mapping feeding into
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/ CmpMap

Mapping A

Mapping B

Figure 3: A CmpMap composed of two Mappings joined in parallel. Each component Mapping
acts on a complementary subset of the input and output coordinates.

the second. The second way, in parallel, is shown in Figure 3. In this case, each Mapping acts
on a complementary subset of the input and output coordinates.?

The CmpMap forms the key to building arbitrarily complex Mappings because it is itself a form
of Mapping. This means that a CmpMap may contain other CmpMaps as components (e.g.
Figure 4). This nesting of CmpMaps can be repeated indefinitely, so that complex Mappings
may be built in a hierarchical manner out of simper ones. This gives AST great flexibility in
the coordinate transformations it can describe.

Further reading: For a more complete description of CmpMaps, see §6. Also see the CmpMap
entry in Appendix D.

2.4 Representing Coordinate Systems

While Mappings (§2.1) represent the relationships between coordinate systems in AST, the
coordinate systems themselves are represented by Objects called Frames (Figure 5). A Frame
is similar in concept to the frame you might draw around a graph. It contains information
about the labels which appear on the axes, the axis units, a title, knowledge of how to format
the coordinate values on each axis, etc. An AST Frame is not, however, restricted to two
dimensions and may have any number of axes.

A basic Frame may be used to represent a Cartesian coordinate system by setting values for
its attributes (all AST Objects have values associated with them called attributes, which may
be set and enquired). Usually, this would involve setting appropriate axis labels and units, for
example. Functions are provided for use with Frames to perform operations such as formatting
coordinate values as text, calculating distances between points, interchanging axes, etc.

2A pair of Mappings can be combined in a third way using a TranMap. A TranMap allows the forward
transformation of one Mapping to be combined with the inverse transformation of another to produce a single
Mapping.
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CmpMap

Mapping B

°
Y

Mapping A

°
Y

Mapping C

Figure 4: CmpMaps (compound Mappings) may be nested in order to construct complex Map-
pings out of simpler building blocks.

SkyFrame
RA
Dec

SkyFrame

Figure 5: (a) A basic Frame is used to represent a Cartesian coordinate system, here 2-
dimensional. (b) A SkyFrame represents a (spherical) celestial coordinate system. (c) The
axis order of any Frame may be permuted to match the coordinate space it describes.
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4 CmpFrame
( SkyFrame
RA )
Dec
o
Frame
A
Wavelength

Figure 6: A CmpFrame (compound Frame) formed by combining two simpler Frames. Note
how the special relationship which exists between the RA and Dec axes is preserved within this
data structure. As with compound Mappings (Figure 4), CmpFrames may be nested in order
to build more complex Frames.

There are several more specialised forms of Frame, which provide the additional functionality
required when handling coordinates within some specific physical domain. This ranges from
tasks such as formatting axis values, to complex tasks such as determining the transformation
between any pair of related coordinate systems. For instance, the SkyFrame (Figure 5b,c),
represents celestial coordinate systems, the SpecFrame represents spectral coordinate systems,
and the TimeFrame represents time coordinate systems. All these provide a wide range of
different systems for describing positions within their associated physical domain, and these
may be selected by setting appropriate attributes.

As with compound Mappings (§2.3), it is possible to merge two Frames together to form a com-
pound Frame, or CmpFrame, in which both sets of axes are combined. One could, for example,
have celestial coordinates on two axes and an unrelated coordinate (wavelength, perhaps) on a
third (Figure 6). Knowledge of the relationships between the axes is preserved internally by the
process of constructing the CmpFrame which represents them.

Further reading: For a more complete description of Frames see §7, for SkyFrames see §8 and
for SpecFrames see §9. Also see the Frame, SkyFrame, SpecFrame, TimeFrame and CmpFrame
entries in Appendix D.

2.5 Networks of Coordinate Systems

Mappings and Frames may be connected together to form networks called FrameSets, which
are used to represent sets of inter-related coordinate systems (Figure 7). A FrameSet may
be extended by adding a new Frame to it, together with an associated Mapping which relates
the new coordinate system to one which is already present. This process ensures that there is
always exactly one path, via Mappings, between any pair of Frames. A function is provided for
identifying this path and returning the complete Mapping.

One of the Frames in a FrameSet is termed its base Frame. This underlies the FrameSet’s
purpose, which is to calibrate datasets and other entities by attaching coordinate systems to
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Frame 1 Current Frame
Mappmg

Frame 3

Mappmg

Frame:2

Frames

Figure 7: A FrameSet is a network of Frames inter-connected by Mappings such that there is
exactly one conversion path, via Mappings, between any pair of Frames.
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them. In this context, the base Frame represents the “native” coordinate system (for example,
the pixel coordinates of an image). Similarly, one Frame is termed the current Frame and
represents the “currently-selected” coordinates. It might, typically, be a celestial or spectral
coordinate system and would be used during interactions with a user, as when plotting axes on
a graph or producing a table of results. Other Frames within the FrameSet represent a library
of alternative coordinate systems which a software user can select by making them current.

Further reading: For a more complete description of FrameSets, see §13 and §14. Also see
the FrameSet entry in Appendix D.

2.6 Input/Output Facilities

AST allows you to convert any kind of Object into a stream of text which contains a full
description of that Object. This text may be written out by one program and read back in by
another, thus allowing the original Object to be reconstructed.

The filter which converts Objects into text and back again is itself a kind of Object, called a
Channel. A Channel provides a number of options for controlling the information content of the
text, such as the addition of comments for human interpretation. It is also possible to intercept
the text being processed by a Channel so that it may be redirected to/from any chosen external
data store, such as a text file, an astronomical dataset, or a network connection.

The text format used by the basic Channel class is peculiar to the AST library - no other
software will understand it. However, more specialised forms of Channel are provided which use
text formats more widely understood.

To further facilitate the storage of coordinate system information in astronomical datasets, a
more specialised form of Channel called a FitsChan is provided. Instead of using free-format
text, a FitsChan converts AST Objects to and from FITS header cards. It also allows the
information to be encoded in the FITS cards in a number of ways (called encodings), so that
WCS information from a variety of sources can be handled.

Another sub-class of Channel, called XmlChan, is a specialised form of Channel that stores
the text in the form of XML markup. Currently, two markup formats are provided by the
XmlChan class, one is closely related to the text format produced by the basic Channel class
(currently, no schema or DTD is available describing this format). The other is a subset of an
early draft of the IVOA Space-Time-Coordinates XML (STC-X) schema (V1.20) described at
http://www.ivoa.net/Documents/ WD /STC/STC-20050225.html 3. The version of STC-X that
has been adopted by the IVOA differs in several significant respects from V1.20, and therefore
this XmlChan format is of historical interest only.

Finally, the StcsChan class provides facilities for reading and writing IVOA STC-S region de-
scriptions. STC-S (see http://www.ivoa.net/Documents/latest/STC-S.html) is a linear string
syntax that allows simple specification of STC metadata. AST supports a subset of the STC-S
specification, allowing an STC-S description of a region within an AST-supported astronomical
coordinate system to be converted into an equivalent AST Region object, and vice-versa.

Further reading: For a more complete description of Channels see §15 and for FitsChans see
§16 and §17. Also see the Channel and FitsChan entries in Appendix D and the Encoding entry
in Appendix C.

3XML documents which use only the subset of the STC schema supported by AST can be read by the XmlChan
class to produce corresponding AST objects (subclasses of the Stc class). However, the reverse is not possible.
That is, AST objects can not currently be written out in the form of STC documents.
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Fcliptic coordinates; mean equinox J2000.0

Figure 8: A labelled coordinate grid for an all-sky zenithal equal area projection in ecliptic
coordinates. This was composed and drawn via a Plot using a single function call.

2.7 Producing Graphical Output

Two dimensional graphical output is supported by a specialised form of FrameSet called a Plot,
whose base Frame corresponds with the native coordinates of the underlying graphics system.
Plotting operations are specified in physical coordinates which correspond with the Plot’s current
Frame. Typically, this might be a celestial coordinate system.

Three dimensional plotting is also supported, via the Plot3D class - sub-class of Plot.

Operations, such as drawing lines, are automatically transformed from physical to graphical
coordinates before plotting, using an adaptive algorithm which ensures smooth curves (because
the transformation is usually non-linear). “Missing” coordinates (e.g. graphical coordinates
which do not project on to the celestial sphere), discontinuities and generalised clipping are all
consistently handled. It is possible, for example, to plot in equatorial coordinates and clip in
galactic coordinates. The usual plotting operations are provided (text, markers), but a geodesic
curve replaces the primitive straight line element. There is also a separate function for drawing
axis lines, since these are normally not geodesics.

In addition to drawing coordinate grids over an area of the sky, another common use of the Plot
class is to produce line plots such as flux against wavelength, displacement again time, etc. For
these situations the current Frame of the Plot would be a compound Frame (CmpFrame) con-
taining a pair of 1-dimensional Frames - the first representing the X axis quantity (wavelength,
time, etc), and the second representing the Y axis quantity (flux, displacement, etc). The Plot
class includes an option for axes to be plotted logarithmically.

Perhaps the most useful graphics function available is for drawing fully annotated coordinate
grids (e.g. Figure 8). This uses a general algorithm which does not depend on knowledge of
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the coordinates being represented, so can also handle programmer-defined coordinate systems.
Grids for all-sky projections, including polar regions, can be drawn and most aspects of the
output (colour, line style, etc.) can be adjusted by setting appropriate Plot attributes.

Further reading: For a more complete description of Plots and how to produce graphical
output, see §21. Also see the Plot entry in Appendix D.
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3 How To...

For those of you with a plane to catch, this section provides some instant templates and recipes
for performing the most commonly-required operations using AST, but without going into detail.
The examples given (sort of) follow on from each other, so you should be able to construct a
variety of programs by piecing them together. Note that some of them appear longer than they
actually are, because we have included plenty of comments and a few options that you probably
won’t need.

If any of this material has you completely baffled, then you may want to read the introduction
to AST programming concepts in §4 first. Otherwise, references to more detailed reading are
given after each example, just in case they don’t quite do what you want.

3.1 ...Obtain and Install AST

The AST library is available both as a stand-alone package and also as part of the Starlink
Software Collection?. If your site has the Starlink Software Collection installed then AST should
already be available.

If not, you can download the AST library by itself from http://www.starlink.ac.uk/ast/.

3.2 ...Structure an AST Program

An AST program normally has the following structure:

/* Include the interface to the AST library. */
#include "ast.h"

/* Main program (or could be any function). */
main () {
<normal C declarations and statements>

/* Enclose the parts which use AST between the astBegin and astEnd macros. */
astBegin;
<C statements which use AST>
astEnd;

<maybe more C statements>

The use of astBegin and astEnd is optional, but has the effect of tidying up after you have
finished using AST, so is normally recommended. For more details of this, see §4.10. For details
of how to access the “ast.h” header file, see §22.1.

3.3 ...Build an AST Program

To build a simple AST program that doesn’t use graphics, use:

“The Starlink Software Collection can be downloaded from http://www.starlink.ac.uk/Download, .
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cc program.c -L/star/lib -I/star/include ‘ast_link‘ -o program

To build a program which uses PGPLOT for graphics, use:

cc program.c -L/star/1lib ‘ast_link -pgplot‘ -o program

For more details about accessing the “ast.h” header file, see §22.1. For more details about linking
programs, see §22.2 and the description of the “ast_link” command in Appendix E.

3.4 ...Read a WCS Calibration from a Dataset

Precisely how you extract world coordinate system (WCS) information from a dataset obviously
depends on what type of dataset it is. Usually, however, you should be able to obtain a set
of FITS header cards which contain the WCS information (and probably much more besides).
Suppose that “cards” is a pointer to a string containing a complete set of concatenated FITS
header cards (such as produced by the CFITSIO function fits_hdr2str). Then proceed as follows:

fitsfile *fptr;
AstFitsChan *fitschan;
AstFrameSet *wcsinfo;
char xheader;

int nkeys, status;

/* 0Obtain all the cards in the header concatenated into a single dynamically
allocated null-terminated character string. Note, we do not exclude
any cards since we may later modify the WCS information within the
header and consequently want to write the entire header out again. */
if( fits_hdr2str( fptr, 0, NULL, O, &header, &nkeys, &status ) )
printf (" Error getting header\n");

/* Header obtained succesfully... */
} else {

/* Create a FitsChan and fill it with FITS header cards. */
fitschan = astFitsChan( NULL, NULL, "" );
astPutCards( fitschan, header );

/* Free the memory holding the concatenated header cards. */
header = free( header );

/* Read WCS information from the FitsChan. */
wcsinfo = astRead( fitschan );
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The result should be a pointer, “wcsinfo”, to a FrameSet which contains the WCS information.
This pointer can now be used to perform many useful tasks, some of which are illustrated in the
following recipes.

Some datasets which do not easily yield FITS header cards may require a different approach,
possibly involving use of a Channel or XmlChan (§15) rather than a FitsChan. In the case of
the Starlink NDF data format, for example, all the above may be replaced by a single call to the
function ndfGtwes—see SUN/33. The whole process can probably be encapsulated in a similar
way for most data systems, whether they use FITS header cards or not.

For more details about reading WCS information from datasets, see §17.3 and §17.4. For a more
general description of FitsChans and their use with FITS header cards, see §16 and §17. For
more details about FrameSets, see §13 and §14.

3.5 ...Validate WCS Information

Once you have read WCS information from a dataset, as in §3.4, you may wish to check that
you have been successful. The following will detect and classify the things that might possibly
go wrong:

#include <string.h>

if ( lastOK ) {
<an error occurred (a message will have been issued)>
} else if ( wcsinfo == AST__NULL ) {
<there was no WCS information present>
} else if ( strcmp( astGetC( wcsinfo, "Class" ), "FrameSet" ) ) {
<something unexpected was read (i.e. not a FrameSet)>
} else {
<WCS information was read OK>

}

For more information about detecting errors in AST functions, see §4.15. For details of how to
validate input data read by AST, see §15.6 and §17.4.

3.6 ...Display AST Data

If you have a pointer to any AST Object, you can display the data stored in that Object in
textual form as follows:

astShow( wcsinfo );

Here, we have used a pointer to the FrameSet which we read earlier (§3.4). The result is written
to the program’s standard output stream. This can be very useful during debugging.

For more details about using astShow, see §4.4. For information about interpreting the output,
also see §15.8.
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3.7 ...Convert Between Pixel and World Coordinates

You may use a pointer to a FrameSet, such as we read in §3.4, to transform a set of points
between the pixel coordinates of an image and the associated world coordinates. If you are
working in two dimensions, proceed as follows:

double xpixel[ N ], ypixel[ N ];
double xworld[ N ], yworld[ N 1;

astTran2( wcsinfo, N, xpixel, ypixel, 1, xworld, yworld );

Here, N is the number of points to be transformed, “xpixel” and “ypixel” hold the pixel coordi-
nates, and “xworld” and “yworld” receive the returned world coordinates.® To transform in the
opposite direction, interchange the two pairs of arrays (so that the world coordinates are given
as input) and change the fifth argument of astTran2 to zero.

To transform points in one dimension, use astTranl. In any other number of dimensions (or if
the number of dimensions is initially unknown), use astTranN or astTranP. These functions are
described in Appendix B.

For more information about transforming coordinates, see §4.8 and §13.6. For details of how to
handle missing coordinates, see §5.8.

3.8 ...Test if a WCS is a Celestial Coordinate System

The world coordinate system (WCS) currently associated with an image may often be a celestial
coordinate system, but this need not necessarily be the case. For instance, instead of right
ascension and declination, an image might have a WCS with axes representing wavelength and
slit position, or maybe just plain old pixels.

If you have obtained a WCS calibration for an image, as in §3.4, in the form of a pointer
“wesinfo” to a FrameSet, then you may determine if the current coordinate system is a celestial
one or not, as follows:

AstFrame *frame;
int issky;

/* Obtain a pointer to the current Frame and determine if it is a
SkyFrame. */

frame = astGetFrame( wcsinfo, AST__CURRENT );

issky = astIsASkyFrame( frame );

frame = astAnnul( frame );

This will set “issky” to 1 if the WCS is a celestial coordinate system, and to zero otherwise.

By pixel coordinates, we mean a coordinate system in which the first pixel in the image is centred on (1,1)
and each pixel is a unit square. Note that the world coordinates will not necessarily be celestial coordinates, but
if they are, then they will be in radians.
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3.9 ...Test if a WCS is a Spectral Coordinate System

Testing for a spectral coordinate system is basically the same as testing for a celestial coordinate
system (see the previous section). The one difference is that you use the astIsASpecFrame
function in place of the astIsASkyFrame function.

3.10 ...Format Coordinates for Display

Once you have converted pixel coordinates into world coordinates (§3.7), you may want to
format them as text before displaying them. Typically, this would convert from (say) radians
into something more comprehensible. Using the FrameSet pointer “wcsinfo” obtained in §3.4
and a pair of world coordinates “xw” and “yw” (e.g. see §3.7), you could proceed as follows:

#include <stdio.h>
const char *xtext, *ytext;
double xw, yw;

astFormat ( wcsinfo, 1, xw );
astFormat( wcsinfo, 2, yw );

xtext
ytext

(void) printf( "Position = %s, %s\n", xtext, ytext );

Here, the second argument to astFormat is the axis number.

With celestial coordinates, this will usually result in sexagesimal notation, such as “12:34:56.7”.
However, the same method may be applied to any type of coordinates and appropriate formatting
will be employed.

For more information about formatting coordinate values and how to control the style of for-
matting used, see §7.6 and §8.6. If necessary, also see §7.7 for details of how to “normalise” a set
of coordinates so that they lie within the standard range (e.g. 0 to 24 hours for right ascension
and +90° for declination).

3.11 ...Display Coordinates as they are Transformed

In addition to formatting coordinates as part of a program’s output, you may also want to
examine coordinate values while debugging your program. To save time, you can “eavesdrop”
on the coordinate values being processed every time they are transformed. For example, when
using the FrameSet pointer “wcsinfo” obtained in §3.4 to transform coordinates (§3.7), you could
inspect the coordinate values as follows:

astSet( wcsinfo, "Report=1" );
astTran2( wcsinfo, N, xpixel, ypixel, 1, xworld, yworld );

By setting the FrameSet’s Report attribute to 1, coordinate transformations are automatically
displayed on the program’s standard output stream, appropriately formatted, for example:
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(42.1087, 20.2717) --> (2:06:03.0, 34:22:39)
(43.0197, 21.1705) --> (2:08:20.6, 35:31:24)
(43.9295, 22.0716) --> (2:10:38.1, 36:40:09)
(44.8382, 22.9753) --> (2:12:55.6, 37:48:55)
(45.7459, 23.8814) --> (2:15:13.1, 38:57:40)
(46.6528, 24.7901) --> (2:17:30.6, 40:06:25)
(47.5589, 25.7013) --> (2:19:48.1, 41:15:11)
(48.4644, 26.6149) --> (2:22:05.6, 42:23:56)
(49.3695, 27.5311) --> (2:24:23.1, 43:32:41)
(50.2742, 28.4499) --> (2:26:40.6, 44:41:27)

For a complete description of the Report attribute, see its entry in Appendix C. For further
details of how to set and enquire attribute values, see §4.6 and §4.5.

3.12 ...Read Coordinates Entered by a User

In addition to writing out coordinate values generated by your program (§3.10), you may also
need to accept coordinates entered by a user, or perhaps read from a file. In this case, you will
probably want to allow “free-format” input, so that the user has some flexibility in the format
that can be used. You will probably also want to detect any typing errors.

Let’s assume that you want to read a number of lines of text, each containing the world coordi-
nates of a single point, and to split each line into individual numerical coordinate values. Using
the FrameSet pointer “wcsinfo” obtained earlier (§3.4), you could proceed as follows:

#include <stdio.h>

char *t;

char text[ MAXCHARS + 2 1;
double coord[ 10 1;

int iaxis, n, naxes;

/* Obtain the number of coordinate axes (if not already known). */
naxes = astGetI( wcsinfo, "Naxes" );

/* Loop to read each line of input text, in this case from the
standard input stream (your programming environment will probably
provide a better way of reading text than this). Set the pointer
"t" to the start of each line read. */

while ( t = fgets( text, MAXCHARS + 2, stdin ) ) {

/* Attempt to read a coordinate for each axis. */
for ( iaxis = 1; iaxis <= naxes; iaxis++ ) {
n = astUnformat( wcsinfo, iaxis, t, &coord[ iaxis - 1] );

/* If nothing was read and this is not the first axis or the
end-of-string, try stepping over a separator and reading again. */
if ( 'n && ( iaxis > 1 ) && *t )

n = astUnformat( wcsinfo, iaxis, ++t, &coord[ iaxis - 1 ] );
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/* Quit if nothing was read, otherwise move on to the next coordinate. */
if ( 'n ) break;
t += n;

}
/* Test for the possible errors that may occur... */
/* Error detected by AST (a message will have been issued). */
if ( lastOK ) {
break;

/* Error in input data at character t[n]. */

} else if ( *t || 'n ) {
<handle the error, or report your own message here>
break;

} else {

<coordinates were read O0K>

}

This algorithm has the advantage of accepting free-format input in whatever style is appropriate
for the world coordinates in use (under the control of the FrameSet whose pointer you provide).
For example, wavelength values might be read as floating point numbers (e.g. “1.047” or “4787"),
whereas celestial positions could be given in sexagesimal format (e.g. “12:34:56” or “12 34.5”)
and would be converted into radians. Individual coordinate values may be separated by white
space and/or any non-ambiguous separator character, such as a comma.

For more information on reading coordinate values using the astUnformat function, see §7.8.
For details of how sexagesimal formats are handled, and the forms of input that may be used
for celestial coordinates, see §8.7.

3.13 ...Create a New WCS Calibration

This section describes how to add a WCS calibration to a data set which you are creating from
scratch, rather than modifying an existing data set.

In most common cases, the simplest way to create a new WCS calibration from scratch is prob-
ably to create a set of strings describing the required calibration in terms of the keywords used
by the FITS WCS standard, and then convert these strings into an AST FrameSet describing
the calibration. This FrameSet can then be used for many other purposes, or simply stored in
the data set.

The full FITS-WCS standard is quite involved, currently running to four separate papers, but
the basic kernel is quite simple, involving the following keywords (all of which end with an
integer axis index, indicated below by < i >):

CRPIXji;
hold the pixel coordinates at a reference point

CRVAL;i,,
hold the corresponding WCS coordinates at the reference point
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CTYPE;i;,
name the quantity represented by the WCS axes, together with the projection algorithm
used to convert the scaled and rotated pixel coordinates to WCS coordinates.

CDiiz_ij¢
a set of keywords which specify the elements of a matrix. This matrix scales pixel offsets
from the reference point into the offsets required as input by the projection algorithm
specified by the CTYPE keywords. This matrix specifies the scale and rotation of the
image. If there is no rotation the off-diagonal elements of the matrix (e.g. CD1_2 and
CD2_1) can be omitted.

As an example consider the common case of a simple 2D image of the sky in which north is
parallel to the second pixel axis and east parallel to the (negative) first pixel axis. The image
scale is 1.2 arc-seconds per pixel on both axes, and the image is presumed to have been obtained
with a tangent plane projection. Furthermore, it is known that pixel coordinates (100.5,98.4)
correspond to an RA of 11:00:10 and a Dec. of -23:26:02. A suitable set of FITS-WCS header
cards could be:

CTYPE1 = ’RA-—-TAN’ / Axis 1 represents RA with a tan projection

CTYPE2 = ’DEC--TAN’ / Axis 2 represents Dec with a tan projection

CRPIX1 = 100.5 / Pixel coordinates of reference point

CRPIX2 = 98.4 / Pixel coordinates of reference point

CRVAL1 = 165.04167 / Degrees equivalent of "11:00:10" hours

CRVAL2 = -23.433889 / Decimal equivalent of "-23:26:02" degrees

CDh1_1 = -0.0003333333 / Decimal degrees equivalent of -1.2 arc-seconds
/

Cb2_2 = 0.0003333333 Decimal degrees equivalent of 1.2 arc-seconds

Notes:

e a FITS header card begins with the keyword name starting at column 1, has an equals
sign in column 9, and the keyword value in columns 11 to 80.

e string values must be enclosed in single quotes.
e celestial longitude and latitude must both be specified in decimal degrees.
e the CD1_1 value is negative to indicate that RA increases as the first pixel axis decreases.

e the (RA,Dec) coordinates will be taken as ICRS coordinates. For FK5 you should add:

RADESYS
EQUINOX

’FK5’
2005.6

The EQUINOX value defaults to J2000.0 if omitted. FK4 can also be used in place of
FK5, in which case EQUINOX defaults to B1950.0.

Once you have created these FITS-WCS header card strings, you should store them in a FitsChan
and then read the corresponding FrameSet from the FitsChan. How to do this is described in
§3.4.
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Having created the WCS calibration, you may want to store it in a data file. How to do this is
described in §3.15).6

If the required WCS calibration cannot be described as a set of FITS-WCS headers, then a
different approach is necessary. In this case, you should first create a Frame describing pixel
coordinates, and store this Frame in a new FrameSet. You should then create a new Frame
describing the world coordinate system. This Frame may be a specific subclass of Frame such
as a SkyFrame for celestial coordinates, a SpecFrame for spectral coordinates, a Timeframe for
time coordinates, or a CmpFrame for a combination of different coordinates. You also need
to create a suitable Mapping which transforms pixel coordinates into world coordinates. AST
provides many different types of Mappings, all of which can be combined together in arbitrary
fashions to create more complicated Mappings. The WCS Frame should then be added into the
FrameSet, using the Mapping to connect the WCS Frame with the pixel Frame.

3.14 ...Modify a WCS Calibration

The usual reason for wishing to modify the WCS calibration associated with a dataset is that
the data have been geometrically transformed in some way (here, we will assume a 2-dimensional
image dataset). This causes the image features (stars, galaxies, etc.) to move with respect to
the grid of pixels which they occupy, so that any coordinate systems previously associated with
the image become invalid.

To correct for this, it is necessary to set up a Mapping which expresses the positions of image
features in the new data grid in terms of their positions in the old grid. In both cases, the grid
coordinates we use will have the first pixel centred at (1,1) with each pixel being a unit square.

AST allows you to correct for any type of geometrical transformation in this way, so long as a
suitable Mapping to describe it can be constructed. For purposes of illustration, we will assume
here that the new image coordinates “xnew” and “ynew” can be expressed in terms of the old
coordinates “xold” and “yold” as follows:

double xnew, xold, ynew, yold;
double m[ 4 1, z[ 2 1;

>

xnew = xold * m[ 0 ] + yold * m[ 1] + z[ 0 ];
ynew = xold * m[ 2 ] + yold * m[ 3] + z[ 1]

where “m” is a 2x2 transformation matrix and “z” represents a shift of origin. This is therefore
a general linear coordinate transformation which can represent displacement, rotation, magnifi-
cation and shear.

In AST, it can be represented by concatenating two Mappings. The first is a MatrixMap, which
implements the matrix multiplication. The second is a WinMap, which linearly transforms one
coordinate window on to another, but will be used here simply to implement the shift of origin
(alternatively, a ShiftMap could have been used in place of a WinMap). These Mappings may
be constructed and concatenated as follows:

STf you are writing the WCS calibration to a FITS file you obviously have the choice of storing the FITS-WCS
cards directly.
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AstCmpMap *newmap;
AstMatrixMap *matrixmap;
AstWinMap *winmap;

/* The MatrixMap may be constructed directly from the matrix "m". */
matrixmap = astMatrixMap( 2, 2, 0, m, "");

/* For the WinMap, we set up the coordinates of the corners of a unit
square (window) and then the same square shifted by the required
amount. */

{
double inal] = { 0.0, 0.0 };
double inb[] = { 1.0, 1.0 };
double outal] = { z[ 01, z[ 1] };
double outb[] ={ 1.0+ z[ 01, 1.0+ z[ 11 };

/* The WinMap will then implement this shift. */
winmap = astWinMap( 2, ina, inb, outa, outb, "" );

}

/* Join the two Mappings together, so that they are applied one after
the other. */
newmap = astCmpMap( matrixmap, winmap, 1, "" );

You might, of course, create any other form of Mapping depending on the type of geometrical
transformation involved. For an overview of the Mappings provided by AST, see §2.2, and for
a description of the capabilities of each class of Mapping, see its entry in Appendix D. For an
overview of how individual Mappings may be combined, see §2.3 (§6 gives more details).

Assuming you have obtained a WCS calibration for your original image in the form of a pointer to
a FrameSet, “wcsinfol” (§3.4), the Mapping created above may be used to produce a calibration
for the new image as follows:

AstFrameSet *wcsinfol, *wcsinfo2;

/* If necessary, make a copy of the WCS calibration, since we are
about to alter it. */
wcsinfo2 = astCopy( wecsinfol );

/* Re-map the base Frame so that it refers to the new data grid
instead of the old one. */
astRemapFrame ( wcsinfo2, AST__BASE, newmap );

This will produce a pointer, “wcsinfo2”, to a new FrameSet in which all the coordinate systems
associated with your original image are modified so that they are correctly registered with the
new image instead.

For more information about re-mapping the Frames within a FrameSet, see §14.4. Also see §14.5
for a similar example to the above, applicable to the case of reducing the size of an image by
binning.
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3.15 ... Write a Modified WCS Calibration to a Dataset

If you have modified the WCS calibration associated with a dataset, such as in the example
above (§3.14), then you will need to write the modified version out along with any new data.

In the same way as when reading a WCS calibration (§3.4), how you do this will depend on your
data system, but we will assume that you wish to generate a set of FITS header cards that can
be stored with the data. You should usually make preparations for doing this when you first
read the WCS calibration from your input dataset by modifying the example given in §3.4 as
follows:

AstFitsChan *fitschanli;
AstFrameSet *wcsinfol;
const char *encode;

/* Create an input FitsChan and fill it with FITS header cards. Note,
if you have all the header cards in a single string, use astPutCards in
place of astPutFits. */
fitschanl = astFitsChan( NULL, NULL, "" );
for ( icard = 0; icard < ncard; icard++ ) astPutFits( fitschanl, cards[ icard ], 0 );

/* Note which encoding has been used for the WCS information. */
encode = astGetC( fitschanl, "Encoding" );

/* Rewind the input FitsChan and read the WCS information from it. */
astClear( fitschanl, "Card" );
wcsinfol = astRead( fitschanl );

Note how we have added an enquiry to determine how the WCS information is encoded in the
input FITS cards, storing a pointer to the resulting string in the “encode” variable. This must
be done before actually reading the WCS calibration.

(N.B. If you will be making extensive use of astGetC in your program, then you should allocate
a buffer and make a copy of this string, because the pointer returned by astGetC will only remain
valid for 50 invocations of the function, and you will need to use the Encoding value again later
on.)

Once you have produced a modified WCS calibration for the output dataset (e.g. §3.14), in
the form of a FrameSet identified by the pointer “wcsinfo2”, you can produce a new FitsChan
containing the output FITS header cards as follows:

AstFitsChan *fitschan2;
AstFrameSet *wcsinfo2;

/* Make a copy of the input FitsChan, AFTER the WCS information has
been read from it. This will propagate all the input FITS header
cards, apart from those describing the input WCS calibration. */

fitschan2 = astCopy( fitschanl );
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/* If necessary, make modifications to the cards in "fitschan2"
(e.g. you might need to change NAXIS1, NAXIS2, etc., to account for
a change in image size). You probably only need to do this if your
data system does not provide these facilities itself. */

<details not shown - see below>

/* Alternatively, if your data system handles the propagation of FITS
header cards to the output dataset for you, then simply create an
empty FitsChan to contain the output WCS information alone.

fitschan2 = astFitsChan( NULL, NULL, "" );

*/

/* Rewind the new FitsChan (if necessary) and attempt to write the
output WCS information to it using the same encoding method as the
input dataset. */

astSet( fitschan2, "Card=1, Encoding=%s", encode );

if ( lastWrite( fitschan2, wcsinfo2 ) ) {

/* If this didn’t work (the WCS FrameSet has become too complex), then
use the native AST encoding instead. */
astSet( fitschan2, "Encoding=NATIVE" );
(void) astWrite( fitschan2, wcsinfo2 );

For details of how to modify the contents of the output FitsChan in other ways, such as by
adding, over-writing or deleting header cards, see §16.4, §16.9, §16.8 and §16.13.

Once you have assembled the output FITS cards, you may retrieve them from the FitsChan
that contains them as follows:

#include <stdio.h>
char card[ 81 ];

astClear( fitschan2, "Card" );
while ( astFindFits( fitschan2, "Y%f", card, 1 ) ) (void) printf( "Y%s\n", card );

Here, we have simply written each card to the standard output stream, but you would obviously
replace this with a function invocation to store the cards in your output dataset.

For data systems that do not use FITS header cards, a different approach may be needed,
possibly involving use of a Channel or XmlChan (§15) rather than a FitsChan. In the case of
the Starlink NDF data format, for example, all of the above may be replaced by a single call
to the function ndfPtwes—see SUN/33. The whole process can probably be encapsulated in a
similar way for most data systems, whether they use FITS header cards or not.

For an overview of how to propagate WCS information through data processing steps, see
§17.6. For more information about writing WCS information to FitsChans, see §16.5 and §17.7.
For information about the options for encoding WCS information in FITS header cards, see
§16.1, §17.1, and the description of the Encoding attribute in Appendix C. For a complete
understanding of FitsChans and their use with FITS header cards, you should read §16 and §17.
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Figure 9: An example of a displayed image with a coordinate grid plotted over it.

3.16 ...Display a Graphical Coordinate Grid

A common requirement when displaying image data is to plot an associated coordinate grid
(e.g. Figure 9) over the displayed image. The use of AST in such circumstances is independent
of the underlying graphics system, so starting up the graphics system, setting up a coordinate
system, displaying the image, and closing down afterwards can all be done using the graphics
functions you would normally use.

However, displaying an image at a precise location can be a little fiddly with some graphics
systems, and obviously the grid drawn by AST will not be accurately registered with the image
unless this is done correctly. In the following template, we therefore illustrate both steps, basing
the image display on the C interface to the PGPLOT graphics package.” Plotting a coordinate
grid with AST then becomes a relatively minor part of what is almost a complete graphics
program.

Once again, we assume that a pointer, “wcsinfo”, to a suitable FrameSet associated with the
image has already been obtained (§3.4).

TAn interface is provided with AST that allows it to use PGPLOT (SUN/15) for its graphics, although
interfaces to other graphics systems may also be written.
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#include "cpgplot.h"

AstPlot *plot;

const float *data;

float hi, lo, scale, x1, x2, xleft, xright, xscale;
float y1, y2, ybottom, yscale, ytop;

int nx, ny;

/* Access the image data, which we assume has dimension sizes "nx" and
"ny", and will be accessed via the "data" pointer. Also derive
limits for scaling it, which we assign to the variables "hi" and
Illoll. */

<this stage depends on your data system, so is not shown>

/* Open PGPLOT using the device given by environment variable
PGPLOT_DEV and check for success. */
if( cpgbeg( 0, " ", 1, 1) ==1) {

/* Clear the screen and ensure equal scales on both axes. */

cpgpage () ;
cpgwnad( 0.0f, 1.0f, 0.0f, 1.0f );

/* Obtain the extent of the plotting area (not strictly necessary for
PGPLOT, but possibly for other graphics systems). From this, derive
the display scale in graphics units per pixel so that the image
will fit within the display area. */
cpgawin( &x1, &x2, &yl, &y2 );
xscale = ( x2 - x1 ) / nx;
yscale = ( y2 - y1 ) / ny;
scale = ( xscale < yscale ) 7 xscale : yscale;

/* Calculate the extent of the area in graphics units that the image
will occupy, so as to centre it within the display area. */
xleft = 0.5f * ( x1 + x2 - nx * scale );

xright = 0.5f * ( x1 + x2 + nx * scale );
ybottom = 0.5f * ( yl + y2 - ny * scale );
ytop = 0.5f * ( y1 + y2 + ny * scale );

/* Set up a PGPLOT coordinate transformation matrix and display the
image data as a grey scale map (these details are specific to
PGPLOT) . */

{
float tr[] = { xleft - 0.5f * scale, scale, 0.0f,
ybottom - 0.5f * scale, 0.0f, scale };
cpggray( data, nx, ny, 1, nx, 1, ny, hi, lo, tr );

/* BEGINNING OF AST BIT */

/* */

/* Store the locations of the bottom left and top right corners of the
region used to display the image, in graphics coordinates. */

{

float gbox[] = { xleft, ybottom, xright, ytop };
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/* Similarly, store the locations of the image’s bottom left and top
right corners, in pixel coordinates -- with the first pixel centred
at (1,1). %/

double pbox[] = { 0.5, 0.5, nx + 0.5, ny + 0.5 };

/* Create a Plot, based on the FrameSet associated with the
image. This attaches the Plot to the graphics surface so that it
matches the displayed image. Specify that a complete set of grid
lines should be drawn (rather than just coordinate axes). */
plot = astPlot( wcsinfo, gbox, pbox, "Grid=1" );
}

/* Optionally, we can now set other Plot attributes to control the
appearance of the grid. The values assigned here use the
colour/font indices defined by the underlying graphics system. */
astSet( plot, "Colour(grid)=2, Font(textlab)=3" );

/* Use the Plot to draw the coordinate grid. */
astGrid( plot );

<maybe some more AST graphics here>
/* Annul the Plot when finished (or use the astBegin/astEnd technique
shown earlier). */

plot = astAnnul( plot );

/* END OF AST BIT */
/* */

/* Close down the graphics system. */
cpgend () ;

Note that once you have set up a Plot which is aligned with a displayed image, you may also use
it to generate further graphical output of your own, specified in the image’s world coordinate
system (such as markers to represent astronomical objects, annotation, etc.). There is also a
range of Plot attributes which gives control over most aspects of the output’s appearance. For
details of the facilities available, see §21 and the description of the Plot class in Appendix D.

For details of how to build a graphics program which uses PGPLOT, see §3.3 and the description
of the ast_link command in Appendix E.

3.17 ...Switch to Plot a Different Celestial Coordinate Grid

Once you have set up a Plot to draw a coordinate grid (§3.16), it is a simple matter to change
things so that the grid represents a different celestial coordinate system. For example, after
creating the Plot with astPlot, you could use:

astSet( plot, "System=Galactic" );

or:
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astSet( plot, "System=FK5, Equinox=J2010" );

and any axes and/or grid drawn subsequently would represent the new celestial coordinate
system you specified. Note, however, that this will only work if the original grid represented
celestial coordinates of some kind (see §3.8 for how to determine if this is the case®). If it did
not, you will get an error message.

For more information about the celestial coordinate systems available, see the descriptions of
the System, Equinox and Epoch attributes in Appendix C.

3.18 ...Give a User Control Over the Appearance of a Plot

The idea of using a Plot’s attributes to control the appearance of the graphical output it produces
(§3.16 and §3.17) can easily be extended to allow the user of a program complete control over
such matters.

For instance, if the file “plot.config” contains a series of plotting options in the form of Plot
attribute assignments (see below for an example), then we could create a Plot and implement
these assignments before producing the graphical output as follows:

#include <stdio.h>
#define MAXCHARS 120

FILE *stream;

char line[ MAXCHARS + 2 1;
int base;

/* Create a Plot and define the default appearance of the graphical
output it will produce. */
plot = astPlot ( wcsinfo, gbox, pbox,
"Grid=1, Colour(grid)=2, Font(textlab)=3" );

/* Obtain the value of any Plot attributes we want to preserve. */
base = astGetI( plot, "Base" );

/* Open the plot configuration file, if it exists. Read each line of
text and use it to set new Plot attribute values. Close the file
when done. */
if ( stream = fopen( "plot.config", "r" ) ) {
while ( fgets( line, MAXCHARS + 2, stream ) ) astSet( plot, "%s", line );
close( stream );

}

/* Restore any attribute values we are preserving. */
astSetI( plot, "Base", base );

/* Produce the graphical output (e.g.). */
astGrid( plot );

8Note that the methods applied to a FrameSet may be used equally well with a Plot.



3.18 ... Give a User Control Over the Appearance of a Plot 31

Notice that we take care that the Plot’s Base attribute is preserved so that the user cannot
change it. This is because graphical output will not be produced successfully if the base Frame
does not describe the plotting surface to which we attached the Plot when we created it.

The arrangement shown above allows the contents of the “plot.config” file to control most aspects
of the graphical output produced (including the coordinate system used; the colour, line style,
thickness and font used for each component; the positioning of axes and tick marks; the precision,
format and positioning of labels; etc.) via assignments of the form:

System=Galactic, Equinox = 2001
Border = 1, Colour( border ) =1
Colour( grid ) = 2

DrawAxes = 1

Colour( axes ) = 3

Digits = 8

Labelling = Interior

For a more sophisticated interface, you could obviously perform pre-processing on this input—
for example, to translate words like “red”, “green” and “blue” into colour indices, to permit
comments and blank lines, etc.

For a full list of the attributes that may be used to control the appearance of graphical output,
see the description of the Plot class in Appendix D. For a complete description of each individual
attribute (e.g. those above), see the attribute’s entry in Appendix C.
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4 An AST Object Primer

The AST library deals throughout with entities called Objects and a basic understanding of
how to handle these is needed before you can use the library effectively. If you are already
familiar with an object-oriented language, such as C++, few of the concepts should seem new to
you. Be aware, however, that AST is designed to be used wvia fairly conventional C and Fortran
interfaces, so some things have to be done a little differently.

If you are not already familiar with object-oriented programming, then don’t worry—we will not
emphasise this aspect more than is necessary and will not assume any background knowledge.
Instead, this section concentrates on presenting all the fundamental information you will need,
explaining how AST Objects behave and how to manipulate them from conventional C programs.

If you like to read documents from cover to cover, then you can consider this section as an
introduction to the programming techniques used in the rest of the document. Otherwise, you
may prefer to skim through it on a first reading and return to it later as reference material.

4.1 AST Objects

An AST Object is an entity which is used to store information and Objects come in various
kinds, called classes, according to the sort of information they hold. Throughout this section,
we will make use of a simple Object belonging to the “ZoomMap” class to illustrate many of
the basic concepts.

A ZoomMap is an Object that contains a recipe for converting coordinates between two hypo-
thetical coordinate systems. It does this by multiplying all the coordinate values by a constant
called the Zoom factor. A ZoomMap is a very simple Object which exists mainly for use in
examples. It allows us to illustrate the ways in which Objects are manipulated and to introduce
the concept of a Mapping—a recipe for converting coordinates—which is fundamental to the
way the AST library works.

4.2 Object Creation and Pointers

Let us first consider how to create a ZoomMap. This is done very simply as follows:

#include "ast.h"
AstZoomMap *zoommap;

zoommap = astZoomMap( 2, 5.0, "" )

The first step is to include the header file “ast.h” which declares the interface to the AST
library. We then declare a pointer of type AstZoomMap# to receive the result and invoke the
function astZoomMap to create the ZoomMap. The pattern is the same for all other classes of
AST Object—you simply prefix “ast” to the class name to obtain the function that creates the
Object and prefix “Ast” to obtain the type of the returned pointer.

These functions are called constructor functions, or simply constructors (you can find an individ-
ual description of all AST functions in Appendix B) and the arguments passed to the constructor
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are used to initialise the new Object. In this case, we specify 2 as the number of coordinates (i.e.
we are going to work in a 2-dimensional space) and 5.0 as the Zoom factor to be applied. Note
that this is a C double value. We will return to the final argument, an empty string, shortly

(64.6).

The value returned by the constructor is termed an Object pointer or, in this case, a ZoomMap
pointer and is used to refer to the Object. You perform all subsequent operations on the Object
by passing this pointer to other AST functions.

4.3 The Object Hierarchy

Now that we have created our first ZoomMap, let us examine how it relates to other kinds of
Object before investigating what we can do with it.

We have so far indicated that a ZoomMap is a kind of Object and have also mentioned that it is
a kind of Mapping as well. These statements can be represented very simply using the following
hierarchy:

Object

Mapping
ZoomMap

which is a way of stating that a ZoomMap is a special class of Mapping, while a Mapping, in
turn, is a special class of Object. This is exactly like saying that an Oak is a special form of
Tree, while a Tree, in turn, is a special form of Plant. This may seem almost trivial, but before
you turn to read something less dull, be assured that it is a very important idea to keep in mind
in what follows.

If we look at some of the other Objects used by the AST library, we can see how these are all
related in a similar way (don’t worry about what they do at this stage):

Object

Mapping

Frame
FrameSet
Plot

UnitMap
ZoomMap

Channel
FitsChan
XmlChan

Notice that there are several different types of Mapping available (i.e. there are classes of Object
indented beneath the “Mapping” heading) and, in addition, other types of Object which are not
Mappings—Channels for instance (which are at the same hierarchical level as Mappings).

The most specialised Object we have shown here is the Plot (which we will not discuss in detail
until §21). As you can see, a Plot is a FrameSet. .. and a Frame... and a Mapping. .. and, like
everything else, ultimately an Object.

What this means is that you can use a Plot not only for its own specialised behaviour, but also
whenever any of these other less-specialised classes of Object is called for. The general rule is
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that an Object of a particular class may substitute for any of the classes appearing above it in
this hierarchy. The Object is then said to inherit the behaviour of these higher classes. We can
therefore use our ZoomMap whenever a ZoomMap, a Mapping or an Object is called for.

Sometimes, this can lead to some spectacular short-cuts by avoiding the need to break large
Objects down in order to access their components. With some practice and a little lateral
thinking you should soon be able to spot opportunities for this.

You can find the full class hierarchy, as this is called, for the AST library in Appendix A and
you may need to refer to it occasionally until you are familiar with the classes you need to use.

4.4 Displaying Objects

Let us now return to the ZoomMap that we created earlier (§4.2) and examine what it’s made
of. There is a function for doing this, called astShow, which is provided mainly for looking at
Objects while you are debugging programs.

If you consult the description of astShow in Appendix B, you will find that it takes a pointer to
an Object (of type AstObjectx) as its argument. Although we have only a ZoomMap pointer
available, this is not a problem. If you refer to the brief class hierarchy described above (§4.3),
you will see that a ZoomMap is an Object, albeit a specialised one, so it inherits the properties
of all Objects and can be substituted wherever an Object is required. We can therefore pass our
ZoomMap pointer directly to astShow, as follows:

astShow( zoommap );

The output from this will appear on the standard output stream and should look like the
following;:

Begin ZoomMap

Nin = 2
IsA Mapping
Zoom = 5

End ZoomMap

Here, the “Begin” and “End” lines mark the beginning and end of the ZoomMap, while the
values 2 and 5 are simply the values we supplied to initialise it (§4.2). These have been given
simple names to make them easy to refer to.

The line in the middle which says “IsA Mapping” is a dividing line between the two values.
It indicates that the “Nin” value is a property shared by all Mappings, so the ZoomMap has
inherited this from its parent class (Mapping). The “Zoom” value, however, is specific to a
ZoomMap and isn’t shared by other kinds of Mappings.

4.5 Getting Attribute Values

We saw above (§4.4) how to display the internal values of an Object, but what about accessing
these values from a program? Not all internal Object values are accessible in this way, but many
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are. Those that are, are called attributes. A description of all the attributes used by the AST
library can be found in Appendix C.

Attributes come in several data types (character string, integer, boolean and floating point) and
there is a standard way of obtaining their values. As an example, consider obtaining the value
of the Nin attribute for the ZoomMap created earlier. This could be done as follows:

int nin;

nin = astGetI( zoommap, "Nin" );

Here, the function astGetl is used to extract the attribute value by giving it the ZoomMap pointer
and the attribute name (attribute names are not case sensitive, but we have used consistent
capitalisation in this document in order to identify them). Remember to use the “ast.h” header
file to include the function prototype.

If we had wanted the value of the Zoom attribute, we would probably have used astGetD instead,
this being a double version of the same function, for example:

double zoom;

zoom = astGetD( zoommap, "Zoom" );

However, we could equally well have read the Nin value as double, or the Zoom value as an
integer, or whatever we wanted.

The data type you want returned is specified simply by replacing the final character of the
astGetX function name with C (character string), D (double), F (float), I (int) or L (long).
If possible, the value is converted to the type you want. If not, an error message will result.
Note that all floating point values are stored internally as double, and all integer values as int.
Boolean values are also stored as integers, but only take the values 1 and 0 (for true/false).

4.6 Setting Attribute Values

Some attribute values are read-only and cannot be altered after an Object has been created.
The Nin attribute of a ZoomMap (describing the number of coordinates) is like this. It is defined
when the ZoomMap is created, but cannot then be altered.

Other attributes, however, can be modified whenever you want. A ZoomMap’s Zoom attribute
is like this. If we wanted to change it, this could be done simply as follows:

astSetD( zoommap, "Zoom", 99.6 );

which sets the value to 99.6. As when getting an attribute value (§4.5), you have a choice of
which data type you will use to supply the new value. For instance, you could use an integer
value, as in:
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astSetI( zoommap, "Zoom", 99 );

and the necessary data conversion would occur. You specify the data type you want to supply
simply by replacing the final character of the astSetX function name with C (character string),
D (double), F (float), I (int) or L (long). Setting a boolean attribute to any non-zero integer
causes it to take the value 1.

An alternative way of setting attribute values for Objects is to use the astSet function (i.e.
with no final character specifying a data type). In this case, you supply the attribute values in
a character string. The big advantage of this method is that you can assign values to several
attributes at once, separating them with commas. This also reads more naturally in programs.
For example:

astSet( zoommap, "Zoom=99.6, Report=1" );

would set values for both the Zoom attribute and the Report attribute (about which more
shortly—=64.8). You don’t really have to worry about data types with this method, as any
character representation will do. Note, when using astSet, a literal comma may be included in
an attribute value by enclosed the value in quotation marks:

astSet( skyframe, ’SkyRef="12:13:32,-23:12:44"’ );

Another attractive feature of astSet is that you can build the character string which contains
the attribute settings in the same way as when using the C run time library “printf” function.
This is most useful when the values you want to set are held in other variables. For example:

double zoom = 99.6;
int report = 1;

astSet( zoommap, "Zoom=Yg, Report=}d", zoom, report );

would replace the “%” conversion specifications by the values supplied as additional arguments.
Any number of additional arguments may be supplied and the formatting rules are exactly the
same as for the C “printf” family of functions. This is a very flexible technique, but does contain
one pitfall:

Pitfall. The default precision used by “printf” (and astSet) for floating point values
is only 6 decimal digits, corresponding approximately to float on most machines,
whereas the AST library stores such values internally as doubles. You should be
careful to specify a larger precision (such as DBL_DIG, as defined in <float.h>)
when necessary. For example:

#include <float.h>

astSet( zoommap, "Zoom=%.*g", DBL_DIG, double_value );
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Substituted strings may contain commas and this is a useful way of assigning such strings as
attribute values without the comma being interpreted as an assignment separator, for example:

astSet( object, "Attribute=Js", "A string, containing a comma" );

This is equivalent to using astSetC and one of these two methods should always be used when
assigning string attribute values which might potentially contain a comma (e.g. strings obtained
from an external source). However, you should not attempt to use astSet to substitute strings
that contain newline characters, since these are used internally as separators between adjacent
attribute assignments.

Finally, a very convenient way of setting attribute values is to do so at the same time as you
create an Object. Every Object constructor function has a final character string argument which
allows you to do this. Although you can simply supply an empty string, it is an ideal opportunity
to initialise the Object to have just the attributes you want. For example, we might have created
our original ZoomMap with:

zoommap = astZoomMap( 2, 5.0, "Report=1" );

and it would then start life with its Report attribute set to 1. The “printf”-style substitution
described above may also be used here.

4.7 Testing, Clearing and Defaulting Attributes

You can use the astGetX family of functions (§4.5) to get a value for any Object attribute at
any time, regardless of whether a value has previously been set for it. If no value has been set,
the AST library will generate a suitable default value.

Often, the default value of an attribute will not simply be trivial (zero or blank) but may
involve considerable processing to calculate. Wherever possible, defaults are designed to be
real-life, sensible values that convey information about the state of the Object. In particular,
they may often be based on the values of other attributes, so their values may change in response
to changes in these other attributes. The ZoomMap class that we have studied so far is a little
too simple to show this behaviour, but we will meet it later on.

An attribute that returns a default value in this way is said to be un-set. Conversely, once an
explicit value has been assigned to an attribute, it becomes set and will always return precisely
that value, never a default.

The distinction between set and un-set attributes is important and affects the behaviour of
several key routines in the AST library. You can test if an attribute is set using the function
astTest, which returns a boolean (integer) result, as in:

if ( astTest( zoommap, "Report" ) ) {

<the Report attribute is set>

}

Once an attribute is set, you can return it to its un-set state using astClear. The effect is as if
it had never been set in the first place. For example:

astClear( zoommap, "Report" );

would ensure that the default value of the Report attribute is used subsequently.
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4.8 Transforming Coordinates

We now have the necessary apparatus to start using our ZoomMap to show what it is really for.
Here, we will also encounter a routine that is a little more fussy about the type of pointer it will
accept.

The purpose of a ZoomMap is to multiply coordinates by a constant zoom factor. To witness
this in action, we will first set the Report attribute for our ZoomMap to a non-zero value:

astSet( zoommap, "Report=1" );

This boolean (integer) attribute, which is present in all Mappings (and a ZoomMap is a Map-
ping), causes the automatic display of all coordinate values that the Mapping converts. It is not
a good idea to leave this feature turned on in a finished program, but it can save a lot of work
during debugging.

Our next step is to set up some coordinates for the ZoomMap to work on, using two arrays
“xin” and “yin”, and two arrays to receive the transformed coordinates, “xout” and “yout”.
Note that these are arrays of double, as are all coordinate data processed by the AST library:

double xin[ 10 ]
double yin[ 10 1]
double xout[ 10 ];
double yout[ 10 1;

{o0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0 };
{o0.0, 2.0, 4.0, 6.0, 8.0, 10.0, 12.0, 14.0, 16.0, 18.0 };

B

We will now use the function astTran2 to transform the input coordinates. This is the most
commonly-used (2-dimensional) coordinate transformation function. If you look at its descrip-
tion in Appendix B, you will see that it requires a pointer to a Mapping, so we cannot supply
just any old Object pointer, as we could with the functions discussed previously. If we passed
it a pointer to an inappropriate Object, an error message would result.

Fortunately, a ZoomMap is a Mapping (Appendix A), so we can use it with astTran2 to transform
our coordinates, as follows:

astTran2( zoommap, 10, xin, yin, 1, xout, yout );

Here, 10 is the number of points we want to transform and the fifth argument value of 1 indicates
that we want to transform in the forward direction (from input to output).

Because our ZoomMap’s Report attribute is set to 1, this will cause the effects of the ZoomMap
on the coordinates to be displayed on the standard output stream:

(0, 0) -=> (0, 0)

(1, 2) ——> (5, 10)

(2, 4) --> (10, 20)
(3, 6) -—> (15, 30)
(4, 8) --> (20, 40)
(5, 10) --> (25, 50)
(6, 12) --> (30, 60)
(7, 14) --> (35, 70)
(8, 16) --> (40, 80)
(9, 18) --> (45, 90)
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This shows the coordinate values of each point both before and after the ZoomMap is applied.
You can see that each coordinate value has been multiplied by the factor 5 determined by the
Zoom attribute value. The transformed coordinates are now stored in the “xout” and “yout”
arrays.

If we wanted to transform in the opposite direction, we need simply change the fifth argument
of astTran2 from 1 to 0. We can also feed the output coordinates from the above back into the
function:

astTran2( zoommap, 10, xout, yout, O, xin, yin );
The output would then look like:

(0, 0) -—> (0, 0)

(5, 10) --> (1, 2)

(10, 20) --> (2, 4)
(15, 30) --> (3, 6)
(20, 40) --> (4, 8)
(25, 50) --> (5, 10)
(30, 60) --> (6, 12)
(35, 70) --> (7, 14)
(40, 80) --> (8, 16)
(45, 90) --> (9, 18)

This is termed the inverse transformation (we have converted from output to input) and you
can see that the original coordinates have been recovered by dividing by the Zoom factor.

4.9 Managing Object Pointers

So far, we have looked at creating Objects and using them in various simple ways but have not
yet considered how to get rid of them again.

Every Object consumes various computer resources (principally memory) and should be disposed
of when it is no longer required, so as to free up these resources. One way of doing this (not
necessarily the best—§4.10) is to annul each Object pointer once you have finished with it, using
astAnnul. For example:

zoommap = astAnnul( zoommap ) ;

This indicates that you have finished with the pointer. Since astAnnul always returns the null
value AST__NULL (as defined in “ast.h”), the recommended way of using it, as here, is to
assign the returned value to the pointer being annulled. This ensures that any attempt to use
the pointer again will generate an error message.

In general, this process may not delete the Object, because there may still be other pointers
associated with it. However, each Object maintains a count of the number of pointers associated
with it and will be deleted if you annul the final pointer. Using astAnnul consistently will
therefore ensure that all Objects are disposed of at the correct time. You can determine how
many pointers are associated with an Object by examining its (read-only) RefCount attribute.
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4.10 AST Pointer Contexts—Begin and End
The use of astAnnul (§4.9) is not completely foolproof, however. Consider the following;:

astShow( astZoomMap( 2, 5.0, "" ) );

This creates a ZoomMap and displays it on standard output (§4.4). Using function invocations
as arguments to other functions in this way is very convenient because it avoids the need for
intermediate pointer variables. However, the pointer generated by astZoomMap is still active,
and since we have not stored its value, we cannot use astAnnul to annul it. The ZoomMap will
therefore stay around until the end of the program.

A simple way to avoid this problem is to enclose all use of AST functions between invocations
of astBegin and astEnd, for example:

astBegin;
astShow( astZoomMap( 2, 5.0, "" ) );
astEnd;

When the expansion of astEnd (which is a macro) executes, every Object pointer created since
the previous use of astBegin (also a macro) is automatically annulled and any Objects left
without pointers are deleted. This provides a simple solution to managing Objects and their
pointers, and allows you to create Objects very freely without needing to keep detailed track of
each one. Because this is so convenient, we implicitly assume that astBegin and astEnd are used
in most of the examples given in this document. Pointer management is not generally shown
explicitly unless it is particularly relevant to the point being illustrated.

If necessary, astBegin and astEnd may be nested, like blocks delimited by “{...}” in C, to define
a series of AST pointer contexts. Each use of astEnd will then annul only those Object pointers
created since the matching use of astBegin.

4.11 Exporting, Importing and Exempting AST Pointers

The astExport function allows you to export particular pointers from one AST context (§4.10)
to the next outer one, as follows:

astExport ( zoommap ) ;

3

This would identify the pointer stored in “zoommap” as being required after the end of the
current AST context. It causes any pointers nominated in this way to survive the next use of
astEnd (but only one such use) unscathed, so that they are available to the next outer context.
This facility is not needed often, but is invaluable when the purpose of your astBegin. . .astEnd
block is basically to generate an Object pointer. Without this, there is no way of getting that
pointer out.

The astImport routine can be used in a similar manner to import a pointer into the current
context, so that it is deleted when the current context is closed using astEnd.

Sometimes, you may also want to exempt a pointer from all the effects of AST contexts. You
should not need to do this often, but it will prove essential if you ever need to write a library
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of functions that stores AST pointers as part of its own internal data. Without some form of
exemption, the caller of your routines could cause the pointers you have stored to be annulled—
thus corrupting your internal data—simply by using astEnd. To avoid this, you should use
astExempt on each pointer that you store, for example:

astExempt ( zoommap ) ;

This will prevent the pointer being affected by any subsequent use of astEnd. Of course, it then
becomes your responsibility to annul this pointer (using astAnnul) when it is no longer required.

4.12 AST Objects within Multi-threaded Applications

When the AST library is built from source, the build process checks to see if the POSIX threads
library (“pthreads”) is available. If so, appropriate pthreads calls are inserted into the AST
source code to ensure that AST is thread-safe, and the AST__THREADSAFE macro (defined
in the “ast.h” header file) is set to “1”. If the pthreads library cannot be found when AST is
built, a working version of the AST library will still be created, but it will not be thread-safe. In
this case the AST__THREADSAFE macro will be set to “0” in ast.h. The rest of this section
assumes that the thread-safe version of AST is being used.

Note, some AST functions call externally specified functions (e.g. the source and sink functions
used by the Channel class or the graphics primitives functions used by the Plot class). AST
does not know whether such functions are thread-safe or not. For this reason, invocations of
these functions within a multi-threaded environment are serialised using a mutex in order to
avoid two or more threads executing an external function simultaneously.

If an application uses more than one thread, the possibility arises that an Object created by
one thread may be accessed by another thread, potentially simultaneously. If any of the threads
modifies any aspect of the Object, this could lead to serious problems within the other threads.
For this reason, some restrictions are placed on how Objects can be used in a multi-threaded
application.

4.12.1 Locking AST Objects for Exclusive Use

The basic restriction is that a thread can only access Objects that it has previously locked for
its own exclusive use. If a thread attempts to access any Object that it has not locked, an error
is reported.

The ast Annul function is the one exception to this restriction. Pointers for Objects not currently
locked by the calling thread can be annulled succesfully using astAnnul. This means that a
thread that has finished with an Object pointer can unlock the Object by passing the pointer to
astUnlock (so that other threads can use the Object via their own cloned pointers), and can then
annul the pointer using astAnnul. Note, however, that an error will be reported by astAnnul if
the supplied pointer has been locked by another thread using astLock.

When an Object is created, it is initially locked by the calling thread. Therefore a thread does
not need to lock an Object explicitly if it was created in the same thread.

If the Object pointer is then passed to another thread, the first thread must unlock the Object
using astUnlock and the second thread must then lock it using astLock.
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If a thread attempts to lock an Object that is already locked by another thread, it can choose
to report an error immediately or to wait until the Object is available.

The astThread function can be used to determine whether an Object is locked by the running
thread, locked by another thread, or unlocked.

If two or more threads need simultaneous access to an Object, a deep copy of the Object should
be taken for each thread, using astCopy, and then the copies should be unlocked and passed
to the othe threads, which should then lock them. Note, if a thread modifies the Object, the
modification will have no effect on the other threads, because the Object copies are independent
of each other.

4.12.2 AST Pointer Contexts

Each thread maintains its own set of nested AST contexts, so when astEnd is called, only Objects
that are locked by the current thread will be annulled.

If an Object is unlocked by a thread using astUnlock, it is exempted from context handling so
that subsequent invocations of astEnd will not cause it to be annulled (this is similar to using
astExempt on the Object). When the Object is subsequently locked by another thread using
astLock, it will be imported into the context that was active when astLock was called.

4.13 Copying Objects

The AST library makes extensive use of pointers, not only for accessing Objects directly, but also
as a means of storing Objects inside other Objects (a number of classes of Object are designed
to hold collections of other Objects). Rather than copy an Object in its entirety, a pointer to
the interior Object is simply stored in the enclosing Object.

This means that Objects may frequently not be completely independent of each other because,
for instance, they both contain pointers to the same sub-Object. In this situation, changing one
Object (say assigning an attribute value) may affect the other one via the common Object.

It is difficult to describe all cases where this may happen, so you should always be alert to the
possibility. Fortunately, there is a simple solution. If you require two Objects to be independent,
then simply use astCopy to make a copy of one, e.g:

AstZoomMap *zoommapl, *zoommap2;

zoommap2 = astCopy( zoommapl ) ;

This process will create a true copy of any Object and return a pointer to the copy. This copy
will not contain any pointers to any component of the original Object (everything is duplicated),
so you can then modify it safely, without fear of affecting either the original or any other Object.



44 4 AN AST OBJECT PRIMER

4.14 C Pointer Types

At this point it is necessary to confess to a small amount of deception. So far, we have been
passing Object pointers to AST functions in order to perform operations on those Objects. In
fact, however, what we were using were not true C functions at all, but merely macros which
invoke a related set of hidden functions with essentially the same arguments. In practical terms,
this makes very little difference to how you use the functions, as we will continue to call them.”

The reason for this deception has to do with the rules for data typing in C. Recall that most
AST functions can be used to process Objects from a range of different classes (§4.3). In C, this
means passing different pointer types to the same function and most C compilers will not permit
this (at least, not without grumbling) because it usually indicates a programming error. In AST,
however, it is perfectly safe if done properly. Some way is therefore needed of circumventing the
normal compiler checking.

The normal way of doing this in C is with a cast. This approach quickly becomes cumbersome,
however, so we have adopted the strategy of wrapping each function in a macro which applies
the appropriate cast for you. This means that you can pass pointers of any type to any AST
function. For example, in passing a ZoomMap pointer to astShow:

AstZoomMap *zoommap;

zoommap = astZoomMap( 2, 5.0, "" );
astShow( zoommap );

we are exploiting this mechanism to avoid a compiler warning, because the notional type of
astShow’s parameter is AstObjectx (not AstZoomMaps).

We must still guard against programming errors, however, so every pointer’s type is checked by
the enclosing macro immediately before any AST function executes. This allows pointer mis-
matches (in the more liberal AST sense—i.e. taking account of the class hierarchy, rather than
the stricter C sense) to be detected at run-time and a suitable error message will be reported.
This message should also identify the line where the error occurs.

A similar strategy is used when pointers are returned by AST functions (i.e. as the function
result). In this case the pointer is cast to voidx, although we retain the notional pointer type in
the function’s documentation (e.g. Appendix B). This allows you to assign function results to
pointer variables without using an explicit cast. For example, the astRead function returns an
Object pointer, but might be used to read (say) a ZoomMap as follows:

AstChannel *channel;
AstZoomMap *zoommap;

zoommap = astRead( channel );

9About the only difference is that you cannot store a pointer to an AST “function” in a variable and use the
variable’s value to invoke that function again later.
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Strictly, there is a C pointer mis-match here, but it is ignored because the operation makes
perfect sense to AST.

There is an important exception to this, however, in that constructor functions
always return strongly-typed pointers. What we mean by this is that the returned pointer
is never implicitly cast to voidx. You must therefore match pointer types when you initially
create an Object using its constructor, such as in the following:

AstZoomMap *zoommap;

zoommap = astZoomMap( 2, 5.0, "" );

If the variable receiving the pointer is of a different type, an appropriate cast should be used,
as in:

AstMapping *mapping;

mapping = (AstMapping *) astZoomMap( 2, 5.0, "" );

This is an encouragement for you to declare your pointer types consistently, since this is of great
benefit to anyone trying to understand your software.

Finally, we should also make one more small confession—AST pointers are not really pointers
at all. Although they behave like pointers, the actual “values” stored are not the addresses of C
data structures. This means that you cannot de-reference an AST pointer to examine the data
within (although you can use astShow instead—§4.4). This is necessary so that AST pointers
can be made unique even although several of them might reference the same Object.

4.15 Error Detection

If an error occurs in an AST function (for example, if you supply an invalid argument, such as
a pointer to the wrong class of Object), an error message will be written to the standard error
stream and the function will immediately return.

To indicate than an error has occurred, an AST error status value is used. This integer value
is stored internally by AST and is initially clear (i.e. set to zero!® to indicate no error). If an
error occurs, it becomes set to a different error value, which allows you to detect the error, as
follows:

zoommap = astZoomMap( 2, 5.0, "Title=My ZoomMap" );
if ( lastOK ) {
<an error has occurred>

}

10We will assume throughout that the “OK” value is zero, as it currently is. However, a different value could,
in principle, be used if the environment in which AST is running requires it. This is why a simple interface is
provided to isolate you from the actual value of the error status.
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The macro astOK is used to test whether the AST error status is still OK. In this example it
would not be, because we have attempted to set a value for the Title attribute of a ZoomMap
and a ZoomMap does not have such an attribute. The actual value of the AST error status can
be obtained using the astStatus macro, as follows:

int status;

status = astStatus;

A consequence of the AST error status being set is that almost all AST functions will subse-
quently cease to function and will instead simply return without action. This means that you
do not need to use astOK to check for errors very frequently. Instead, you can usually simply
invoke a succession of AST functions. If an error occurs in any of them, the following ones will
do nothing and you can check for the error at the end, for example:

astFunctionA( ... );
astFunctionB( ... );
astFunctionC( ... );

if ( lastOK ) {
<an error has occurred>

}

There are, however, a few functions which do not adhere to this general rule and which will
attempt to execute if the AST error status is set. These functions, such as astAnnul, are
concerned with cleaning up and recovering resources. For example, in the following:

zoommap = astZoomMap( 2, 5.0, "" );
astFunctionX( ... );
astFunctionY( ... );
astFunctionZ( ... );

zoommap = astAnnul( zoommap ) ;
if ( lastOK ) {
<an error has occurred>

3

astAnnul will execute normally in order to recover the resources associated with the ZoomMap
that was created earlier, regardless of whether an error has occurred in any of the intermedi-
ate functions. Functions which behave in this way are noted in the relevant descriptions in
Appendix B.

If a serious error occurs, you will probably want to abort your program, but sometimes you
may want to recover and carry on. Because very few AST functions will execute once the AST
error status has been set, you must first clear this status by using the astClearStatus macro, as
follows:
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astClearStatus;

This will restore the AST error status to its OK value, so that AST functions execute normally
again.

Occasionally, you may also need to set the AST error status to an explicit error value (see §15.14
for an example). This is done using astSetStatus and can be used to communicate to AST that
an error has occurred in some other item of software, for example:

int new_status;

astSetStatus( new_status );

The effect is that most AST routines will subsequently return without action, just as if an error
had occurred within the AST library itself.

4.16 Sharing the Error Status

In some software, it is usual to maintain a single integer error status variable which is accessed
by each function as it executes. If an error occurs, this status variable is set and other functions
can detect this and take appropriate action.

If you use AST in such a situation, it can be awkward to have a separate internal error status
used by AST functions alone. To remedy this, AST is capable of sharing the error status variable
used by any other software, so long as they use the same conventions (i.e. a C int with the same
“OK” value). To enable this facility, you should pass the address of your status variable to
astWatch, as follows:

int my_status;
int *old_address;

0ld_address = astWatch( &my_status );

Henceforth, instead of using its own internal error status variable, AST will use the one you
supply, so that it can detect errors flagged by other parts of your software. The address of the
original error status variable is returned by astWatch, so you can restore the original behaviour
later if necessary.

Note that this facility is not available via the Fortran interface to the AST library.
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5 Inter-Relating Coordinate Systems (Mappings)

In §4 we used the ZoomMap as an example of a Mapping. We saw how it could be used to
transform coordinates from its input to its output and back again (§4.8). We also saw how its
behaviour could be controlled by setting various attributes, such as the Zoom factor and the
Report attribute that made it display coordinate values as it transformed them.

In this section, we will look at Mappings a bit more thoroughly and explore the behaviour which
is common to all the Mappings provided by AST. This is good background for what follows,
because many of the Objects we discuss later will also turn out to be Mappings in various
disguises.

5.1 The Mapping Class

Before we start, it is worth taking a quick look at the Mapping class as a whole and some of the
sub-classes it contains:

Mapping
CmpMap
DssMap
GrismMap
IntraMap
LutMap
MathMap
MatrixMap
PermMap
PolyMap
SlaMap
SpecMap
TimeMap
UnitMap
WcsMap
ZoomMap

Frame
<various types of Frame>

The Frame sub-class has been separated out here because it is covered in detail in §7. We start
by looking at the parent class, Mapping.

AST does not provide a function to create a basic Mapping (i.e. the astMapping constructor does
not exist). This is because the Mapping class itself is “virtual” and basic Mappings are of no use
in themselves. The Mapping class serves simply to contain the various specialised Mappings that
exist. However, it provides more than just a convenient heading for them because it bestows all
classes of Mapping with common properties (e.g. attributes) and behaviour. By examining the
Mapping class, we are therefore examining the things that all other Mappings have in common.
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5.2 The Mapping Model

The concept of a Mapping was illustrated in Figure 1. It is a black box which you can supply
with a set of coordinate values in return for a set of transformed coordinates. The two sets are
termed input and output coordinates. You can also go back the other way and transform output
coordinates back into input coordinates, as we saw in §4.8.

5.3 Input and Output Coordinate Numbers

In general, the number of coordinates you feed into a Mapping to represent a single point need
not be the same as the number that comes out. Often these numbers will be the same, and
often they will both equal 2 (because 2-dimensional coordinate systems are common), but this
needn’t necessarily be the case.

The number of coordinates required to specify an input point is represented by the integer
attribute Nin and the number required to specify an output point is represented by Nout. These
are read-only attributes common to all Mappings. Generally, their values are fixed when a
Mapping is created.

In §4.2, we saw how the Nin attribute for a ZoomMap was initialised by the call to the constructor
function astZoomMap which created it. In this case, the Nout attribute was not needed and
it implicitly took the same value as Nin, but we could have enquired about its value had we
wanted, as follows:

#include "ast.h"
AstZoomMap *zoommap;
int nout;

nout = astGetI( zoommap, "Nout" );

5.4 Forward and Inverse Transformations

We stated earlier that a Mapping may be used to transform coordinates either from input to
output, or vice versa. These are termed its forward and inverse transformations.

This statement was not quite accurate, however, because in general Mappings are only poten-
tially capable of working in both directions. In practice, coordinate transformation may only
be feasible in one direction or the other because some functions are not easily inverted (they
may be multi-valued, for instance). Allowance must be made for this, so each Mapping has two
read-only boolean (integer) attributes, TranForward and Tranlnverse, which indicate whether
each transformation is available.

A transformation is available if the corresponding attribute is non-zero, otherwise it is not.'! If
you enquire about the value of these attributes, a value of 0 or 1 is returned. Attempting to use
a Mapping to apply a transformation which is not available will result in an error.

"Most of the Mappings provided by the AST library work in both directions, although the LutMap can behave
otherwise.
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5.5 Inverting Mappings

An important attribute, common to all Mappings, is the Invert flag. This is a boolean (integer)
attribute that can be assigned a new value at any time. If it is non-zero, it has the effect of
interchanging the Mapping’s input and output coordinates and the Mapping is then said to be
inverted. By default, the Invert attribute is zero.

There is no magic in this. There is no fancy arithmetic involved in inverting mathematical
functions, for instance. The Invert flag is simply a switch that interchanges a Mapping’s input
and output ports. If it is non-zero, the Mapping’s Nin and Nout attributes are swapped, its
TranForward and TranInverse attributes are swapped, and when you ask for what was once the
forward transformation you get the inverse transformation instead (and wvice versa). When you
return the Invert attribute to zero, or clear it, the Mapping returns to its original behaviour.

Often, the actual value of the Invert attribute is unimportant and you simply wish to invert its
boolean sense, so that what was the Mapping’s input becomes its output and wice versa. This
is most easily accomplished using astInvert, as follows:

AstMapping *mapping;

astInvert( mapping );

If the Mapping you have happens to be the wrong way around, astInvert allows you to correct
the problem.

5.6 Finding the Rate of Change of a Mapping Output

The astRate function can be used to find the rate of change of any Mapping output with respect
to any Mapping input, at a given input position. The method used produces good accuracy
(typically a relative error of 10E-10 or less) but may require the Mapping to be evaluated 100
or more times. An estimate of the second derivative is also produced by this function.

5.7 Reporting Coordinate Transformations

We have already seen (§4.8) how the boolean (integer) Report attribute of a Mapping works. If it
is non-zero, the operation of transforming a set of coordinates will result in a report being written
to standard output. This will display the coordinate values before and after transformation. It
can save considerable time during program development by eliminating the need to add loops
and output statements to your program.

In a finished program, however, you should be careful that the Report attribute is not set to
a non-zero value unless you want to see the output (there may often be rather a lot of this!).
To help prevent unwanted output being produced by accident, the Report attribute is unusual
in that its value is not preserved when a Mapping is copied using astCopy (§4.13). Instead, it
reverts to its default of zero (i.e. un-set) in the copy. It also reverts to zero when a Mapping is
written out, e.g. to a file using a Channel (§15).
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5.8 Handling Missing (Bad) Coordinate Values

Even when coordinates can, in principle, be transformed in either direction by a Mapping, there
may still be instances where specific coordinate values cannot be handled. For example, the
Mapping may be mathematically intractable (e.g. singular) in certain places, or it may map a
subset of one space on to another, so that some points in one space are not represented in the
other. Sky projections often show this behaviour, since it is quite common to project only half
of the celestial sphere on to two dimensions, omitting points on the opposite side of the sky.
There are many other examples.

To indicate when coordinates cannot be transformed, for whatever reason, AST substitutes a
special output coordinate value given by the macro AST__BAD (as defined in the “ast.h” header
file). Before making use of coordinates generated by any of the AST transformation functions,
therefore, you may need to check for the presence of this value.

Because coordinates with the value AST__BAD can be generated in this way, all other AST
functions are also capable of recognising this value and handling it appropriately. The coordi-
nate transformation functions do this by propagating any missing input coordinate information
through to their output. This means that if you supply coordinates with the value AST__BAD,
the returned coordinates are also likely to contain this value. Here, for example, is what happens
if you use a ZoomMap (with Zoom factor 5) to transform such a set of coordinates:

(0, 0) -—> (0, 0)

(<bad>, 2) --> (<bad>, 10)

(2, 4) --> (10, 20)

(3, 6) -—> (15, 30)

(4, <bad>) --> (20, <bad>)

(5, 10) -—> (25, 50)

(<bad>, <bad>) --> (<bad>, <bad>)
(7, 14) --> (35, 70)

(8, 16) —--> (40, 80)

(9, 18) —--> (45, 90)

The AST__BAD value is represented by the string “<bad>”. This is a case of “garbage in,
garbage out” but at least it’s consistent garbage that you can recognise!

Note how the presence of the AST__BAD value in one input dimension does not necessarily result
in the loss of information for all output dimensions. Sometimes, such loss will be unavoidable,
but in general an attempt is made to preserve information as far as possible. The exact behaviour
will depend on the Mapping involved.

5.9 Example—the UnitMap

The UnitMap is the simplest of Mappings. It is a null Mapping. Its purpose is simply to copy
coordinate values, unaltered, from its input to its output and vice versa.

A UnitMap has no additional attributes beyond those of a basic Mapping. Its Nin and Nout
attributes are always equal and are specified by the first argument supplied to its constructor.
For example:



5.10 Example—the PermMap 53

AstUnitMap *unitmap;

unitmap = astUnitMap( 2, "" );

will create a UnitMap that copies 2-dimensional coordinates. Inverting a UnitMap has no effect
beyond changing the value of its Invert attribute.

The main use of a UnitMap is to allow a Mapping to be supplied when one is required (as an
argument to a function, for example) but you wish it to leave coordinate values unchanged.

5.10 Example—the PermMap

The PermMap is a rather more complicated Mapping than we have met previously. Its purpose
is to change the order, or number, of coordinates. It is also able to substitute fixed values for
coordinates.

To illustrate its action, suppose our input coordinates are denoted by (z1,z2,x3,24) in a 4-
dimensional space and suppose our output coordinates are to be (x4, z1, x2, x3). Our PermMap,
therefore, should rotate the coordinate values by one position.

To create such a PermMap, we first set up two integer arrays. One of these, “outperm”, controls
the selection of input coordinates for use in the output and the other, “inperm”, controls selection
of output coordinates for use in the input:

int outperm[ 4 1 ={ 4, 1, 2, 3 };
int inperm[ 4 1 ={ 2, 3, 4, 1 };

Note that the numbers we store in these arrays are the indices of the coordinates that we want
to select. We have chosen these so that the forward and inverse transformations will perform
complementary permutations on the coordinates.

The PermMap is then created by passing these arrays to its constructor, as follows:

AstPermMap *permmap;

permmap = astPermMap( 4, inperm, 4, outperm, NULL, "" );

Note that we specify the number of input and output coordinates separately, but set both to 4
in this example. The resulting PermMap would have the following effect when used to transform
coordinates:

Forward:
(1, 2, 3, 4) --> (4, 1, 2, 3)
(2, 4, 6, 8) -—> (8, 2, 4, 6)
(3, 6, 9, 12) --> (12, 3, 6, 9)
(4, 8, 12, 16) --> (16, 4, 8, 12)
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(56, 10, 15, 20) --> (20, 5, 10, 15)

Inverse:
(4, 1, 2, 3) -—> (1, 2, 3, 4)
(8, 2, 4, 6) -——> (2, 4, 6, 8)
(12, 3, 6, 9) --> (3, 6, 9, 12)
(16, 4, 8, 12) --> (4, 8, 12, 16)
(20, 5, 10, 15) --> (5, 10, 15, 20)

If the number of input and output coordinates are unequal so, also, will be the size of the
“outperm” and “inperm” arrays. This means, however, that we cannot fill them with coordinate
indices so that they perform complementary permutations, because one transformation will lose
information (discard a coordinate) that the other cannot recover. To give an example, consider
the following:

int outperm[ 3 1 = { 4, 3, 2 };
int inperm[ 4 1 = { -1, 3, 2, 1 };
double con[ 1 ] = { 99.004 };

In this case, the forward transformation will change (z1, 9,23, 24) into (z4,z3,z2) and will
discard x1. The inverse transformation restores the original coordinate order, but has no value
to assign to the first coordinate. In this case, the number entered in the “inperm” array is —1.

This negative value indicates that the coordinate value should be obtained by addressing the
first element of the “con” array (i.e. element zero). This array, ignored in the previous example,
may then be used to supply a value for the missing coordinate.

The constructor function:

permmap = astPermMap( 4, inperm, 3, outperm, con, "" );

will then create a PermMap with the following effect when used to transform coordinates:

Forward:
(1, 2, 3, 4) ——> (4, 3, 2)
(2, 4, 6, 8) -—> (8, 6, 4)
3, 6, 9, 12) ——> (12, 9, 6)
(4, 8, 12, 16) --> (16, 12, 8)
(5, 10, 15, 20) --> (20, 15, 10)

Inverse:
(4, 3, 2) -—> (99.004, 2, 3, 4)
(8, 6, 4) --> (99.004, 4, 6, 8)
(12, 9, 6) --> (99.004, 6, 9, 12)
(16, 12, 8) --> (99.004, 8, 12, 16)
(20, 15, 10) --> (99.004, 10, 15, 20)
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The “con” array may contain more than one value if necessary and may be addressed by both
the “inperm” and “outperm” arrays using coordinate indices —1, —2, —3, etc. to refer to the
first, second, third, etc. elements.

If there is no suitable replacement value that can be supplied via the “con” array, a value of zero
may be entered into the “outperm” and/or “inperm” arrays. This causes the value AST__BAD
to be used for the affected coordinate (as defined in the “ast.h” header file), thus indicating a
missing coordinate value (§5.8).

The principle use for a PermMap lies in matching a coordinate system to a data array where
there is a choice of storage order for the data. PermMaps are also useful for discarding unwanted
coordinates so as to reduce the number of dimensions, such as when selecting a “slice” from a
multi-dimensional array.
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6 Compound Mappings (CmpMaps)

We now turn to a rather special form of Mapping, the CmpMap. The Mappings we have
considered so far have been atomic, in the sense that they perform pre-defined elementary
transformations. A CmpMap, however, is a compound Mapping. In essence, it is a framework
for containing other Mappings and its purpose is to allow those Mappings to work together in
various combinations while appearing as a single Object. A CmpMap’s behaviour is therefore
not pre-defined, but is determined by the other Mappings it contains.

6.1 Combining Mappings in Series

Consider a simple example based on two 2-dimensional coordinate systems. Suppose that to
convert from one to the other we must swap the coordinate order and multiply both coordinates
by 5, so that the coordinates (x1,x2) transform into (5z2,5x1). This can be done in two stages:

1. Apply a PermMap (§5.10) to swap the coordinate order.
2. Apply a ZoomMap (§4.8) to multiply both coordinate values by the constant 5.
The PermMap and ZoomMap are then said to operate in series, because they are applied

sequentially (c.f. Figure 2). We can create a CmpMap that applies these Mappings in series as
follows:

#include "ast.h"
AstCmpMap *cmpmap;
AstPermMap *permmap;
AstZoomMap *zoommap;

/* Create the individual Mappings. */

{

int inperm[ 2 ] = { 2, 1 };

int outperm[ 2 ] = { 2, 1 };

permmap = astPermMap( 2, inperm, 2, outperm, NULL, "" );
}
zoommap = astZoomMap( 2, 5.0, "" )

/* Combine them in series. */
cmpmap = astCmpMap( permmap, zoommap, 1, "" );

/* Annul the individual Mapping pointers. */
permmap = astAnnul( permmap );
zoommap = astAnnul( zoommap );

Here, the third argument (1) of the constructor function astCmpMap indicates “in series”.

When used to transform coordinates in the forward direction, the resulting CmpMap will apply
the first component Mapping (the PermMap) and then the second one (the ZoomMap). When
transforming in the inverse direction, it will apply the second one (in the inverse direction) and
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then the first one (also in the inverse direction). In general, although not in this particular
example, the order in which the two component Mappings are supplied is significant. Clearly,
also, the Nout attribute (number of output coordinates) for the first Mapping must equal the
Nin attribute (number of input coordinates) for the second one.

6.2 Combining Mappings in Parallel

Connecting two Mappings in series (§6.1) is not the only way of combining them. The alternative,
in parallel, involves applying the two Mappings at once but on different subsets of the coordinate
values.

Consider, for example, a set of 3-dimensional coordinates and suppose we wish to transform
them by swapping the first two coordinate values and multiplying the final one by 5, so that
(21,2, x3) transforms into (z2, z1,5z3). Again, we can perform each of these steps individually
using exactly the same PermMap and ZoomMap as used earlier (§6.1). In this case, however,
these individual Mappings are applied in parallel (c.f. Figure 3).

Creating a CmpMap for this purpose is also very simple:
cmpmap = astCmpMap( permmap, zoommap, 0, "" );

The only difference is that the third argument of astCmpMap is now zero, meaning “in parallel”.

As before, the order in which the two component Mappings are supplied is significant. The first
one acts on the lower-numbered input coordinate values (however many it needs) and produces
the lower-numbered output coordinates, while the second Mapping acts on the higher-numbered
input coordinates (however many remain) and generates the remaining higher-numbered output
coordinates. When the CmpMap transforms coordinates in the inverse direction, both compo-
nent Mappings are applied to the same coordinates, but in the inverse direction.

Note that the Nin and Nout attributes of the component Mappings (i.e. the numbers of input
and output coordinates) will sum to give the Nin and Nout attributes of the overall CmpMap.

6.3 The Component Mappings

A CmpMap does not store copies of its component Mappings, but simply holds pointers to them.
In the example above (§6.1), we were free to annul the individual Mapping pointers after creating
the CmpMap because the pointers held internally by the CmpMap increased the reference count
(RefCount attribute) of each component Mapping by one. The individual components are
therefore not deleted by astAnnul, but retained until the CmpMap itself is deleted and annuls
the pointers it holds. Consistent use of astAnnul (§4.9) and/or pointer contexts (§4.10) will
therefore ensure that all Objects are deleted at the appropriate time.

Note that access to a CmpMap’s component Mappings is not generally available unless pointers
to them are retained when the CmpMap is created. If such pointers are retained, then subsequent
modifications to the individual components can be used to indirectly modify the behaviour of
the overall CmpMap.

There is an important exception to this, however, because a CmpMap retains a copy of the initial
Invert flag settings of each of its components and uses these in order to ignore any subsequent
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external changes. This means that you may invert either component Mapping before inserting
it into a CmpMap and need not worry if you un-invert it again later. The CmpMap’s behaviour
will not be affected by the later action.

6.4 Creating More Complex Mappings

Because a CmpMap is itself a Mapping, any existing CmpMap can substitute (§4.3) as a com-
ponent Mapping when constructing a new CmpMap using astCmpMap. This has the effect
of nesting one CmpMap inside another and opens up many new possibilities. For example,
combining three Mappings in series can be accomplished as follows:

AstMapping *mapl, *map2, *map3;

cmpmap = astCmpMap( mapl, astCmpMap( map2, map3, 1, "" ), 1, "" );

The way in which the individual component Mappings are grouped within the nested CmpMaps
is not usually important.

A similar technique can be used to combine multiple Mappings in parallel and, of course, mixed
series and parallel combinations are also possible (Figure 4). There is no built-in limit to how
many CmpMaps may be nested in this way, so this mechanism provides an indefinitely extensible
method of building complex Mappings out of the elemental building blocks provided by AST.

In practice, you might not need to construct such complex CmpMaps yourself very frequently,
but they will often be returned by AST routines. Nested CmpMaps underlie the library’s entire
ability to represent a wide range of different coordinate transformations.

6.5 Example—Transforming Between Two Calibrated Images

Consider, as a practical example of CmpMaps, two images of the sky. Suppose that for each im-
age we have a Mapping which converts from pixel coordinates to a standard celestial coordinate
system, say FK5 (J2000.0). If we wish to inter-compare these images, we can do so by using
this celestial coordinate system to align them. That is, we first convert from pixel coordinates
in the first image into FK5 coordinates and we then convert from FK5 coordinates into pixel
coordinates in the second image.

If “mapa” and “mapb” are pointers to our two original Mappings, we could form a CmpMap
which transforms directly between the pixel coordinates of the first and second images by com-
bining these Mappings, as follows:

AstCmpMap *alignmap;
AstMapping *mapa, *mapb;

astInvert( mapb );
alignmap = astCmpMap( mapa, mapb, 1, "" );
astInvert( mapb );
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Here, we have used astlnvert (§5.5) to invert “mapb” before inserting it into the CmpMap
because, as supplied, it converted in the wrong direction. Afterwards, we invert it again to
return it to its original state. The CmpMap, however, will ignore this subsequent change (§6.3).

The forward transformation of the resulting CmpMap will now transform from pixel coordinates
in the first image to pixel coordinates in the second image, while its inverse transformation will
convert in the opposite direction.

6.6 Over-Complex Compound Mappings

While a CmpMap provides a very flexible way of constructing arbitrarily complex Mappings
(§6.4), it unfortunately also provides an opportunity for representing simple Mappings in com-
plex ways. Sometimes, unnecessary complexity can be difficult to avoid but can obscure impor-
tant simplifications.

Consider the example above (§6.5), in which we inter-related two images of the sky wvia a
CmpMap. If the two images turned out to be simply offset from each other by a shift along each
pixel axis, then this approach would align them correctly, but it would be inefficient. This is be-
cause it would introduce unnecessary and expensive transformations to and from an intermediate
celestial coordinate system, whereas a simple shift of pixel origin would suffice.

Recognising that a simpler and more efficient solution exists obviously requires a little more
than simply joining two Mappings end-to-end. We must also determine whether the resulting
CmpMap is more complex than it needs to be, i.e. contains redundant information. If it is, we
then need a way to simplify it.

The problem is not always just one of efficiency, however. Sometimes we may also need to
know something about the actual form a Mapping takes—i.e. the nature of the operations it
performs. Unnecessary complexity can obscure this, but such complexity can easily accumulate
during normal data processing.

For example, a Mapping that transforms pixel coordinates into positions on the sky might be
repeatedly modified as changes are made to the shape and size of the image. Typically, on each
occasion, another Mapping will be concatenated to reflect what has happened to the image. This
could soon make it difficult to discern the overall nature of the transformation from the complex
CmpMap that accumulates. If only shifts of origin were involved on each occasion, however,
they could be combined into a single shift which could be represented much more simply.

Suppose we now wanted to represent our image’s celestial coordinate calibration using FITS
conventions (§17). This requires AST to determine whether the Mapping which relates pixel
coordinate to sky positions conforms to the FITS model (for example, whether it is equivalent
to applying a single set of shifts and scale factors followed by a map projection). Clearly, there
is an important use here for some means of simplifying the internal structure of a CmpMap.

6.7 Simplifying Compound Mappings

The ability to simplify compound Mappings is provided by the astSimplify function. This func-
tion encapsulates a number of heuristics for converting Mappings, or combinations of Mappings
within a CmpMap, into simpler, equivalent ones. When applied to a CmpMap, astSimplify tries
to reduce the number of individual Mappings within it by merging neighbouring component
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PermMap PermMap

ZoomMaps

Figure 10: An over-complex compound Mapping, consisting of PermMaps, ZoomMaps and a
UnitMap, which can be simplified to become a single UnitMap. The enclosing nested CmpMaps
have been omitted for clarity.

Mappings together. It will do this with both series and parallel combinations of Mappings, or
both, and will handle CmpMaps nested to any depth (§6.4).

To illustrate how astSimplify works, consider the combination of Mappings shown in Figure 10.
If this were contained in a CmpMap, it could be simplified as follows:

AstMapping *simpler;

simpler = astSimplify( cmpmap );

In this case, the result would be a simple 3-dimensional UnitMap (the identity Mapping). To
reach this conclusion, astSimplify will have made a number of deductions, roughly as follows:

1. The two 2-dimensional ZoomMaps in series are equivalent to a single ZoomMap with a
combined Zoom factor of unity. This, in turn, is equivalent to a 2-dimensional UnitMap.

2. This UnitMap in parallel with the other 1-dimensional UnitMap is equivalent to a single
3-dimensional UnitMap. This UnitMap, sandwiched between any other pair of Mappings,
can then be eliminated.

3. The remaining two PermMaps in series are equivalent to a single 3-dimensional Per-
mMap. When these are combined, the resulting PermMap is found to be equivalent to a
3-dimensional UnitMap.

This example is a little contrived, but illustrates how astSimplify can deal with even quite com-
plicated compound Mappings through a series of incremental simplifications. Where possible,
this will result in either a simpler compound Mapping or, if feasible, an atomic (non-compound)
Mapping, as here. If no simplification is possible, astSimplify will just return a pointer to the
original Mapping.

Although astSimplify cannot identify every simplification that is theoretically possible, sufficient
rules are included to deal with the most common and important cases.
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7 Representing Coordinate Systems (Frames)

An AST Frame is an Object that is used to represent a coordinate system. Contrast this with
a Mapping (§5), which is used to describe how to convert between coordinate systems. The two
concepts are complementary and we will see how they work together in §13.

In this section we will discuss only basic Frames, which represent Cartesian coordinate systems.
More specialised types of Frame (e.g. the SkyFrame, which represents celestial coordinate sys-
tems, and the SpecFrame, which represents spectral coordinate systems) are covered later (§8
and §9) and, naturally, inherit the properties and behaviour of the simple Frames discussed here.

7.1 The Frame Model

The best way to think about a Frame is like the frame that you would plot around a graph. In
two dimensions, you would have an “z” and a “y” axis, a title on the graph and labels on the
axes, together with an indication of the physical units being plotted. The values marked along
each axis would be formatted in a human-readable way. The frame around a graph therefore
defines a coordinate space within which you can locate points, draw lines, calculate distances,

etc.

An AST Frame works in much the same way, embodying all of these concepts and a few more.
It also allows any number of axes, which means that a Frame can represent coordinate systems
with any number of dimensions. You specify how many when you create it.

Remember that the basic Frame we are considering here is completely general. It knows nothing
of celestial coordinates, for example, and all its axes are equivalent. It can be adapted to describe
any general purpose Cartesian coordinate system by setting its attributes, such as its Title and
axis Labels, etc. to appropriate values.

7.2 Creating a Frame

Creating a Frame is straightforward and follows the usual pattern:

#include "ast.h"
astFrame *frame;

frame = astFrame( 2, "" );

The first argument of the astFrame constructor function specifies the number of axes which the
Frame should have.

7.3 Using a Frame as a Mapping

We should briefly point out that the Frame we created above (§7.2) is also a Mapping (§5.1)
and therefore inherits the properties and behaviour common to other Mappings.

One way to see this is to set the Frame’s Report attribute (inherited from the Mapping class)
to a non-zero value and pass the Frame pointer to a coordinate transformation function, such
as astTran2.
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double xin[ 5 ]
double yin[ 5 ]
double xout[ 5 1;
double yout[ 5 1;

.0, 4.0, 5.0 };
0, 8.0

{0.0, 1.0, 2.0, 3 . ;
{0.0, 2.0, 4.0, 6.0, 8.0, 10.0 };

astSet( frame, "Report=1" );
astTran2( frame, 5, xin, yin, 1, xout, yout );

The resulting output might then look like this:

(1, 2) -—> (1, 2)
(2, 4) -—> (2, 4)
(3, 6) -—> (3, 6)
(4, 8) -—> (4, 8)
(5, 10) --> (5, 10)

This is not very exciting because a Frame implements an identity transformation just like a
UnitMap (85.9). However, it illustrates that a Frame can be used as a Mapping and that its
Nin and Nout attributes are both equal to the number of Frame axes.

When we consider more specialised Frames (e.g. §13), we will see that using them as Mappings
can be very useful indeed.

7.4 Frame Axis Attributes

Frames have a number of attributes which can take multiple values, one for each axis. These
separate values are identified by appending the axis number in parentheses to the attribute
name. For example, the Label(1) attribute is a character string containing the label which
appears on the first axis.

Axis attributes are accessed in the same way as all other attributes (§4.5, §4.6 and §4.7). For
example, the Label on the second axis might be obtained as follows:

const char *label;

label = astGetC( frame, "Label(2)" );

Other attribute access functions (astSetX, astTest and astClear) may also be applied to axis
attributes in the same way.

If the axis number is stored in a program variable, then its value must be formatted to generate
a suitable attribute name before using this to access the attribute itself. For example, the
following will print out the Label value for each axis of a Frame:
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#include <stdio.h>
char name[ 18 ];
int iaxis, naxes;

naxes = astGetI( frame, "Naxes" );
for ( iaxis = 1; iaxis <= naxes; iaxis++ ) {
(void) sprintf( name, "Label(%d)", iaxis );
label = astGetC( frame, name );
(void) printf( "Label %2d: %s\n", iaxis, label );

Note the use of the Naxes attribute to determine the number of Frame axes.

The output from this might look like the following:

Label 1: Axis 1
Label 2: Axis 2

In this case, the Frame’s default axis Labels have been revealed as rather un-exciting. Normally,
you would set much more useful values, typically when you create the Frame—perhaps something
like:

frame = astFrame( 2, "Label(1)=0ffset from centre of field,"
"Unit (1) =mm,"
"Label(2)=Transmission coefficient,"
"Unit(2) =%" );

Here, we have also set the (character string) Unit attribute for each axis to describe the physical
units represented on that axis. All the attribute assignments have been combined into a single
string, separated by commas.

7.5 Frame Attributes

We will now briefly outline the various attributes associated with a Frame (this is, of course,
in addition to those inherited from the Mapping class). We will not delve too deeply into the
details of each attribute, for which you should consult the appropriate description in Appendix C.
Instead, we aim simply to sketch the range of facilities available:

Naxes
A read-only integer giving the number of Frame axes.

Title
A string describing the coordinate system which the Frame represents.

Label(axis)
A label string for each axis.
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Unit (axis)
A string describing the physical units on each axis. You can choose whether to
make this attribute “active” or “passive” (using astSetActiveUnit ). If active,
its value will be taken into account when finding the Mapping between two
Frames (e.g. a scaling of 0.001 would be used to connect two axis with units
of “km” and “m”). If passive, its value is ignored. Its use is described in more
detail in §7.14.

Symbol(axis)
A string containing a “short form” symbol (e.g. like “X” or “Y”) used to rep-
resent the quantity plotted on each axis.

Digits/Digits(axis)
The preferred number of digits of precision to be used when formatting values
for display on each axis.

Format (axis)
A string containing a format specifier which determines exactly how values
should be formatted for display on each axis (§7.6). If this attribute is un-
set, the formatting is based on the Digits value, otherwise the Format string
over-rides the Digits value.

Direction(axis)
A boolean (integer) value which indicates in which direction each axis should
be plotted. If it is non-zero (the default), the axis should be plotted in the con-
ventional direction—i.e. increasing to the right for the abscissa and increasing
upwards for the ordinate. If it is zero, the axis should be plotted in reverse.
This attribute is provided as a hint only and programs are free to ignore it if
they wish.

Domain
A character string which identifies the physical domain to which the Frame’s
coordinate system applies. The primary purpose of this attribute is to prevent
unwanted conversions from occurring between coordinate systems which are not
related. Its use is described in more detail in §7.12.

System
A character string which identifies the specific coordinate system used to de-
scribe positions within the physical domain represented by the Frame. For a
simple Frame, this attribute currently has a fixed value of “Cartesian”, but could
in principle be extended to include options such as “Polar”, “Cylindrical”, etc.
More specialised Frames such as the SkyFrame, TimeFrame and SpecFrame, re-
define the allowed values to be appropriate to the domain which they describe.
For instance, the SkyFrame allows values such as “FK4” and “Galactic”, and
the SpecFrame allows values such as “frequency” and “wavelength”.

Epoch
This value is used to qualify a coordinate system by giving the moment in time
when the coordinates are correct. Usually, this will be the date of observation.
The Epoch value is important in cases where coordinates systems move with
respect to each other over time. An example of two such coordinate systems
are the FK4 and FK5 celestial coordinate systems.

ObsLon
Specifies the longitude of the observer (assumed to be on the surface of the
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earth). The basic Frame class does not use this value, but specialised sub-
classes may. For instance, the SpecFrame class uses it to calculate the relative
velocity of the observer and the centre of the earth for use in converting between
standards of rest.

ObsLat

Specifies the latitude of the observer. Use in conjunction with ObsLon.

There are also some further Frame attributes, not described above, which are important when
Frames are used as templates to search for other Frames. Their use goes beyond the present
discussion.

7.6 Formatting Axis Values

The coordinate values associated with each axis of a Frame are stored (e.g. within your program)
as double values. The Frame class therefore provides a function, astFormat, to convert these
values into formatted strings for display:

const char *string
double value;

string = astFormat( frame, iaxis, value );

Here, the astFormat function is passed a Frame pointer, the number of an axis (“iaxis”) and a
double precision value to format (“value”). It returns a pointer to character string containing
the formatted value.

By default, the formatting applied will be determined by the Frame’s Digits attribute and will
normally display results with seven digits of precision (corresponding approximately to the C
“float” data type on many machines). Setting a different Digits value, however, allows you to
adjust the precision as necessary to suit the accuracy of the coordinate data you are processing.
If finer control is needed, it is also possible to set a Digits value for each individual axis by
appending an axis number to the attribute name (e.g. “Digits(2)”). If this is done, it over-rides
the effect of the Frame’s main Digits value for that axis.

Even finer control is possible by setting the (character string) Format attribute for a Frame axis.
The string given should contain a C format specifier which explicitly determines how the values
on that axis should be formatted. This will over-ride the effects of any Digits value'?. Any valid
“printf” format specifier may be used so long as it consumes exactly one double value.

When setting Format values, remember that the “%” which appears in the format specifier may
need to be doubled to “%%” if you are using a function (such as astSet) which interprets “printf”
format specifiers itself.

It is recommended that you use astFormat whenever you display formatted coordinate values,
even although you could format them yourself using “sprintf”. This is because it puts the Frame

12The exception to this rule is that if the Format value includes a precision of “.#”, then Digits will be used to
determine the actual precision used.
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in control of formatting. When you start to handle more elaborate Frames (representing, say,
celestial coordinates), you will need different formatting methods. This approach delivers them
without any change to your software.

You should also consider regularly using the astNorm function, described below (§7.7), for any
values that will be made visible to the user of your software.

7.7 Normalising Frame Coordinates

The function astNorm is provided to cope with the fact that some coordinate systems do not
extend indefinitely in all directions. Some may have boundaries, outside which coordinates
are meaningless, while others wrap around on themselves, so that after a certain distance you
return to the beginning again (coordinate systems based on circles and spheres, for instance). A
basic Frame has no such complications, but other more specialised Frames (such as SkyFrames,
representing the celestial sphere—=88) do.

The role played by astNorm is to normalise any arbitrary set of coordinates by converting
them into a set which is “within bounds”, interpreted according to the particular Frame in
question. For example, on the celestial sphere, a right ascension value of 24 hours or more
can have a suitable multiple of 24 hours subtracted without affecting its meaning and astNorm
would perform this task. Similarly, negative values of right ascension would have a multiple of
24 hours added, so that the result lies in the range zero to 24 hours. The coordinates in question
are modified in place by astNorm, as follows:

double point[ 2 ];

astNorm( frame, point );

If the coordinates supplied are initially OK, as they would always be with a basic Frame, then
they are returned unchanged.

Because the main purpose of astNorm is to convert coordinates into the preferred range for
human consumption, its use is almost always appropriate immediately before formatting coor-
dinate values for display using astFormat (§7.6). Even if the Frame in question does not restrict
the range of coordinates, so that astNorm does nothing, using it will allow you to process other
more specialised Frames, where normalisation is important, without changing your software.

7.8 Reading Formatted Axis Values

The process of converting a formatted coordinate value for a Frame axis, such as might be
produced by astFormat (§7.6), back into a numerical (double) value ready for processing is
performed by astUnformat. However, although this process is essentially the inverse of that
performed by astFormat, there are a number of additional difficulties that must be addressed in
practice.

The main use for astUnformat is in reading formatted coordinate values which have been entered
by the user of a program, or read from a file. As such, we can rarely assume that the values are
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neatly formatted in the way that astFormat would produce. Instead, it is usually desirable to
allow considerable flexibility in the form of input that can be accommodated, so as to permit
“free-format” data input by the user. In addition, we may need to extract individual coordinate
values embedded in other textual data.

Underlying these requirements is the root difficulty that the textual format used to represent a
coordinate value will depend on the class of Frame we are considering. For example, for a basic
Frame, astUnformat may have to read a value like “1.25e-6", whereas for a more specialised
Frame representing celestial coordinates it may have to handle a value like “-07d 49m 13s”. Of
course, the format might also depend on which axis is being considered.

Ideally, we would like to write software that can handle any kind of Frame. However, this
makes it a little more difficult to analyse textual input data to extract individual coordinate
values, since we cannot make assumptions about how the values are formatted. It would not be
safe, for example, simply to assume that the values being read are separated by white space.
This is not just because they might be separated by some other character, but also because
celestial coordinate values might themselves contain spaces. In fact, to be completely safe, we
cannot make any assumptions about how a formatted coordinate value is separated from the
surrounding text, except that it should be separated in some way which is not ambiguous.

This is the very basic assumption upon which astUnformat works. It is invoked as follows:

int n;

n = astUnformat( frame, iaxis, string, &value );

It is supplied with a Frame pointer (“frame”), the number of an axis (“iaxis”) and a character
string to be read (“string”). If it succeeds in reading a value, astUnformat returns the resulting
coordinate to the address supplied via the final argument (“&value”). The returned function
value indicates how many characters were read from the string in order to obtain this result.

The string is read as follows:

1. Any white space at the start is skipped over.

2. Further characters are considered, one at a time, until the next character no longer matches
any of the acceptable forms of input (given the characters that precede it). The longest
sequence of characters which matches is then considered “read”.

3. If a suitable sequence of characters was read successfully, it is converted into a coordinate
value which is returned. Any white space following this sequence is then skipped over and
the total number of characters consumed is returned as the function value.

4. If the sequence of characters read is empty, or insufficient to define a coordinate value,
then the string does not contain a value to read. In this case, the read is aborted and
astUnformat returns a function value of zero and no coordinate value. However, it returns
without error.
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Note that failing to read a coordinate value does not constitute an error, at least so far as
astUnformat is concerned. However, an error can occur if the sequence of characters read appears
to have the correct form but cannot be converted into a valid coordinate value. Typically, this
will be because it violates some constraint, such as a limit on the value of one of its fields. The
resulting error message will give details.

For any given Frame axis, astUnformat does not necessarily always use the same algorithm for
converting the sequence of characters it reads into a coordinate value. This is because some
forms of input (particularly free-format input) can be ambiguous and might be interpreted in
several ways depending on the context. For example, the celestial longitude “12:34:56.7” could
represent an angle in degrees or a right ascension in hours. To decide which to use, astUnformat
may examine the Frame’s attributes and, in particular, the appropriate Format(axis) string
which is used by astFormat when formatting coordinate values (§7.6). This is done in order
that astFormat and astUnformat should complement each other—so that formatting a value
and then un-formatting it will yield the original value, subject to any rounding error.

To give a simple (but crucially incomplete!) example, consider reading a value for the axis of a
basic Frame, as follows:

n = astUnformat( frame, iaxis, " 1.5e6 -99.0", &value );

ast Unformat will skip over the initial space in the string supplied and then examine each succes-
sive character. It will accept the sequence “1.5e6” as input, but reject the space which follows
because it does not form part of the format of a floating point number. It will then convert the
characters “1.5e6” into a coordinate value and skip over the three spaces which follow them. The
returned function value will therefore be 9, equal to the total number of characters consumed.
This result may be used to address the string during a subsequent read, so as to commence
reading at the start of “-99.0”.

Most importantly, however, note that if the user of a program mistakenly enters the string
“1.5r6...”7 instead of “ 1.5e6...”, a coordinate value of 1.5 and a function result of 4 will be
returned, because the “r” would prematurely terminate the attempt to read the value. Because
this sort of mistake does not automatically result in an error but can produce incorrect results,
it is vital to check the returned function value to ensure that the expected number of characters
have been read.'® For example, if the string is expected to contain exactly one value, and

nothing else, then the following would suffice:

n = astUnformat( frame, iaxis, string, &value );
if ( astOK ) {

if ( stringln ] Il 'n ) {
<error in input data>
} else {

<value read correctly>

}

If astUnformat does not detect an error itself, we check that it has read to the end-of-string
and consumed at least one character (which traps the case of a zero-length input string). If this
reveals an error, the value of “n” indicates where it occurred.

13 Anyone who seriously uses the C run time library “scanf” function will know about the need for this check!
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Another common requirement is to obtain a position by reading a list of coordinates from a string
which contains one value for each axis of a Frame. We assume that the values are separated in
some unambiguous manner, perhaps using white space and/or some unspecified single-character
separator. The choice of separator is up to the data supplier, who must choose it so as not to
conflict with the format of the coordinate values, but our software does not need to know what
it is. The following is a template algorithm for reading data in this form:

const char *s;
double values[ 10 ];

/* Initialise a string pointer. */
s = string;

/* Obtain the number of Frame axes and loop through them. */
naxes = astGetI( frame, "Naxes" );
for ( iaxis = 1; iaxis <= naxes; iaxis++ ) {

/* Attempt to read a value for this axis. */
n = astUnformat( frame, iaxis, s, &values[ iaxis - 11 );

/* If nothing was read and this is not the first axis or the
end-of-string, try stepping over a separator and reading again. */
if ( 'n && ( iaxis > 1 ) && *s )

n = astUnformat( frame, iaxis, ++s, &values[ iaxis - 1] );

/* Quit if nothing was read, otherwise move on to the next value. */
if ( 'n ) break;
s += n;

/* Check for possible errors. */
if ( astOK ) {

if (*s || 'n ) {
<error in input data>
} else {

<values read correctly>

}

In this case, “s” will point to the location of any input error.

Note that this algorithm is insensitive to the precise format of the data and will therefore work
with any class of Frame and any reasonably unambiguous input data. For example, here is a
range of suitable input data for a 3-dimensional basic Frame:

1253
3.1,3.2,3.3
1.5, 2.6, -9.9e2
-1.1+0.4-1.8
.1/.2/.3
44.0 ; 55.1 -14
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7.9 Permuting Frame Axes

Once a Frame has been created, it is not possible to change the number of axes it contains, but
it is possible to change the order in which these axes occur. To do so, an integer permutation
array is filled with the numbers of the axes so as to specify the new order, e.g:

int perm[ 2] = { 2, 1 };

In this case, the axes of a 2-dimensional Frame could be interchanged by passing this permutation
array to the astPermAxes function. That is, an (x1,x2) coordinate system would be changed
into an (z2,x1) coordinate system by:

astPermAxes( frame, perm );

If the axes are permuted more than once, the effects are cumulative. You are, of course, not
restricted to Frames with only two axes.

7.10 Selecting Frame Axes

An alternative to changing the number of Frame axes, which is not allowed, is to create a new
Frame by selecting axes from an existing one. The method of doing this is very similar to the
way astPermAxes is used (§7.9), in that we supply an integer array filled with the numbers of
the axes we want, in their new order. In this case, however, the number of array elements need
not equal the number of Frame axes.

For example, we could select axes 3 and 2 (in that order) from a 3-dimensional Frame as follows:

astFrame *framel, *frame2;
astMapping *mapping;
int pick[ 21 ={ 3, 2 };

frame2 = astPickAxes( framel, 2, pick, &mapping );

This would return a pointer to a 2-dimensional Frame (“frame2”) which contains the information
associated with axes 3 and 2, in that order, from the original Frame (“framel”). The original
Frame is not altered by this process. Beware, however, that the axis information may still be
shared by both Frames, so if you wish to alter either of them independently you may first need
to use astCopy (§4.13) to make an independent copy.

In addition to the new Frame pointer, astPickAxes will also return a pointer to a new Mapping
via its fourth argument (you may supply a NULL pointer as an argument if you do not want
this Mapping). This Mapping will inter-relate the two Frames. By this we mean that its
forward transformation will convert coordinates originally in the coordinate system represented
by “framel” into that represented by “frame2”, while its inverse transformation will convert in
the opposite direction. In this particular case, the Mapping would be a PermMap (§5.10) and
would implement the following transformations:
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Forward:
(1, 2, 3) -—> (3, 2)
(2, 4, 6) -——> (6, 4)
(3, 6, 9) -—> (9, 6)
(4, 8, 12) -—> (12, 8)
(5, 10, 15) --> (15, 10)

Inverse:
(3, 2) -—> (<bad>, 2, 3)
(6, 4) ——> (<bad>, 4, 6)
(9, 6) --> (<bad>, 6, 9)
(12, 8) --> (<bad>, 8, 12)
(15, 10) --> (<bad>, 10, 15)

This is our first introduction to the idea of inter-relating pairs of Frames via a Mapping, but
this will assume a central role later on.

Note that when using astPickAxes, it is also possible to request more axes than there were in
the original Frame. This will involve selecting axes from the original Frame that do not exist.
To do this, the corresponding axis number (in the “pick” array) should be set to zero and the
effect is to introduce an additional new axis which is not derived from the original Frame. This
axis will have default values for all its attributes. You will need to do this because astPickAxes
does not allow you to select any of the original axes more than once.™

7.11 Calculating Distances, Angles and Offsets

Some complementary functions are provided for use with Frames to allow you to perform geo-
metric operations without needing to know the nature of the coordinate system represented by
the Frame.

Functions can be used to find the distance between two points, and to offset a specified distance
along a line joining two points, etc. In essence, these define the metric of the coordinate space
which the Frame represents. In the case of a basic Frame, this is a Cartesian metric.

The first of these functions, astDistance, returns a double distance value when supplied with
the Frame coordinates of two points. For example:

double dist;
double pointi[ 2 ]
double point2[ 2 ]
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dist = astDistance( frame, pointl, point2 );

This calculates the distance between the origin (0,0) and a point at position (1,1). In this case,
the result, as you would expect, is \/2. However, this is only true for the Cartesian coordinate

141t will probably not be obvious why this restriction is necessary, but consider creating a Frame with one
longitude axis and two latitude axes. Which latitude axis should be associated with the longitude axis?
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system which a basic Frame represents. In general, astDistance will calculate the geodesic
distance between the two points, so that with a more specialised Frame (such as a SkyFrame,
representing the celestial sphere) a great-circle distance might be returned.

The astOffset function is really the inverse of astDistance. Given two points in a Frame, it
calculates the coordinates of a third point which is offset a specified distance away from the first
point along the geodesic joining it to the second one. For example:

double pointi[ 2 ]
double point2[ 2 ]
double point3[ 2 1;
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astOffset( frame, pointl. point2, 0.5, point3 );

This would fill the “point3” array with the coordinates of a point which is offset 0.5 units away
from the origin (0,0) in the direction of the position (1,1). Again, this is a simple result in a
Cartesian Frame, as varying the offset will trace out a straight line. On the celestial sphere,
however (e.g. using a SkyFrame), it would trace out a great circle.

The functions astAxDistance and astAxOffset are similar to astDistance and astOffset, except
that the curves which they use as “straight lines” are not geodesics, but curves parallel to a
specified axis!®. One reason for using these functions is to deal with the cyclic ambiguity of
longitude and latitude axes.

The astOffset2 function is similar to astOffset, but instead of using the geodesic which passes
through two positions, it uses the geodesic which passes at a given position angle through the
starting position.

Position angles are always measured from the positive direction of the second Frame axis to
the required line, with positive angles being in the same sense as rotation from the positive
direction of the second axis to the positive direction of the first Frame axis. This definition
applies to all classes of Frame, including SkyFrame. The default ordering of axes in a SkyFrame
makes the second axis equivalent to north, and so the definition of position angle given above
corresponds to the normal astronomical usage, “from north, through east”. However, it should
be remembered that it is possible to permute the axes of a SkyFrame (or indeed any Frame),
so that north becomes axis 1. In this case, an AST “position angle” would be the angle “from
east, through north”. Always take the axis ordering into account when deriving an astronomical
position angle from an AST position angle.

Within a Cartesian coordinate system, the position angle of a geodesic (i.e. a straight line) is
constant along its entire length, but this is not necessarily true of other coordinate systems.
Within a spherical coordinate system, for instance, the position angle of a geodesic will vary
along its length (except for the special cases of a meridian and the equator). In addition to
returning the required offset position, the astOffset2 function returns the position angle of the
geodesic at the offset position. This is useful if you want to trace out a path which involves
turning through specified angles. For instance, tracing out a rectangle in which each side is
a geodesic involves turning through 90 degrees at the corners. To do this, use astOffset2 to

15For instance, a line of constant Declination is not a geodesic
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calculate the position of each corner, and then add (or subtract) 90 degrees from the position
angle returned by astOffset2.

The ast Angle function calculates the angle subtended by two points, at a third point. If used with
a 2-dimensional Frame the returned angle is signed to indicate the sense of rotation (clockwise
or anti-clockwise) in taking the “shortest route” from the first point to the second. If the Frame
has more than 2 axes, the result is un-signed and is always in the range zero to .

The astAxAngle function is similar to astAngle, but the “reference direction”, from which angles
are measured, is a specified axis.

The astResolve function resolves a given displacement within a Frame into two components,
parallel and perpendicular to a given reference direction.

The displacement is specified by two positions within the Frame; the starting and ending po-
sitions. The reference direction is defined by the geodesic curve passing through the starting
position and a third specified position. The lengths of the two components are returned, together
with the position on the reference geodesic which is closest to the third supplied point.

7.12 The Domain Attribute

The Domain attribute is one of the most important properties of a Frame, although the concept
it expresses can sometimes seem a little subtle. We will introduce it here, but its true value will
probably not become apparent until later (§14.2).

To understand the need for the Domain attribute, consider using different Frames to represent
the following different coordinate systems associated with a CCD image:

1. A coordinate system based on pixel numbers.
2. Positions on the CCD chip, measured in pm.
3. Positions in the focal plane of the telescope, measured in mm.

4. A celestial coordinate system, measured in radians.

If we had two such CCD images, we might legitimately want to align them pixel-for-pixel (i.e.
using the coordinate system based on pixel numbers) in order to, say, divide by a flat-field
exposure. We might similarly consider aligning them using any of the other coordinate systems
so as to achieve different results. For example, we might consider merging separate images from
a CCD mosaic by using focal plane positions.

It would obviously not be legitimate, however, to directly compare positions in one image mea-
sured in pixels with positions in the other measured in mm, nor to equate chip positions in pym
with sky coordinates in radians. If we wanted to inter-compare these coordinates, we would
need to do it indirectly, using other information based on the experimental set-up. For instance,
we might need to know the size of the pixels expressed in mm and the orientation of the CCD
chip in the focal plane.

Note that it is not simply the difference in physical units which prevents certain coordinates from
being directly inter-compared (because the appropriate unit scaling factors could be included
without any additional information). Neither is it the fact that different coordinate systems are
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in use (because we could legitimately inter-compare two different celestial coordinate systems
without any extra information). Instead, it is the different nature of the coordinate spaces to
which these coordinate systems have been applied.

We normally express this by saying that the coordinate systems apply to different physical
domains. Although we may establish ad hoc relationships between coordinates in different
physical domains, they are not intrinsically related to each other and we need to supply extra
information before we can convert coordinates between them.

In AST, the role of the (character string) Domain attribute is to assign Frames to their respective
physical domains. The way it operates is as follows:

e Coordinate systems which apply to the same physical domain (i.e. whose Frames have the
same Domain value) can be directly inter-compared.

If the domain has several coordinate systems associated with it (e.g. the celestial sphere),
then a coordinate conversion may be involved. Otherwise, coordinate values may simply
be equated.

e Coordinate systems which apply to different physical domains (i.e. whose Frames have
different Domain values) cannot be directly inter-compared.

If any relationship does exist between such coordinate systems—and it need not—then
additional information must be supplied in order to establish the relationship between
them in any particular case. We will see later (§13) how to establish such relationships
between Frames in different domains.

With the basic Frames we are considering here, each physical domain only has a single (Carte-
sian) coordinate system associated with it, so that if two such Frames have the same Domain
value, their coordinate systems will be identical and may simply be equated. With more spe-
cialised Frames, however, more than one coordinate system may apply to each domain. In such
cases, a coordinate conversion may need to be performed.

When a basic Frame is created, its Domain attribute defaults to an empty string. This means
that all such Frames belong to the same (null) domain by default and therefore describe the
same unspecified physical coordinate space. In order to assign a Frame to a different domain,
you simply need to set its Domain value. This is normally most conveniently done when it is
created, as follows:

framel = astFrame( 2, "Domain=CCD_CHIP,"
"Unit(1)=micron,"
"Unit(2)=micron" );
frame2 = astFrame( 2, "Domain=FOCAL_PLANE,"
"Unit (1)=mm,"
"Unit (2)=mm" );

Here, we have created two Frames in different physical domains. Although their coordinate
values all have units of length, they cannot be directly inter-compared (because their axes may
be rotated with respect to each other, for instance).

All Domain values are automatically converted to upper case and white space is removed, but
there are no other restrictions on the names you may use to label different physical domains.
From a practical point of view, however, it is worth following a few conventions (§7.13).
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7.13 Conventions for Domain Names

When choosing a value for the Domain attribute of a Frame, it obviously makes sense to avoid
generic names which might clash with those used for similar (but subtly different!) purposes by
other programmers. If you are developing software for an instrument, for example, and want to
identify an instrumental coordinate system, then it is sensible to add a distinguishing prefix. For
instance, you might use <INST>_FOCAL_PLANE, where <INST> (e.g. an acronym) identifies
your instrument.

For some purposes, however, a standard choice of Domain name is desirable so that different
items of software can communicate. For this purpose, the following Domain names are reserved
by AST and the use recommended below should be carefully observed:

GRAPHICS
Identifies the coordinate space used by an underlying computer graphics system
to specify plotting operations. Typically, when performing graphical operations,
AST is used to define additional coordinate systems which are related to these
“native” graphical coordinates. Plotting may be carried out in any of these co-
ordinate systems, but the GRAPHICS domain identifies the native coordinates
through which AST communicates with the underlying graphics system.

GRID
Identifies the instantaneous data grid used to store and handle data, together
with an associated coordinate system. In this coordinate system, the first el-
ement stored in an array of data always has a coordinate value of unity at its
centre and all elements have unit extent. This applies to all dimensions.

If data are copied or transformed to a new data grid (by whatever means), or
a subset of the original grid is extracted, then the same rules apply to the copy
or subset. Its first element therefore has GRID coordinate values of unity at its
centre. Note that this means that GRID coordinates remain attached to the
first element of the data grid and not to its data content (e.g. the features in
an image).

PIXEL
Identifies an array of pixels and an associated pizel-based coordinate system
which is related to the GRID coordinate system (above) simply by a shift of
origin along each axis. This shift may be integral, fractional, positive, negative
or zero. The data elements retain their unit extent along each axis.

Because the amount of shift is unspecified, the PIXEL domain is distinct from
the GRID domain. The relationship between them contains a degree of uncer-
tainty, such as typically arises from the different conventions used by different
software systems. For instance, in some software the first pixel is regarded as
being centred at (1,1), while in other software it is at (0.5,0.5). In addition, some
software packages implement a “pixel origin” which allows pixel coordinates to
start at an arbitrary value.

The GRID domain (which corresponds with the pixel-numbering convention
used by FITS) is a special case of the PIXEL domain and avoids this uncertainty.
In general, additional information is required in order to convert from one to
the other.
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SKY
Identifies the domain which contains all equivalent celestial coordinate systems.
Because these are represented in AST by SkyFrames (§8), it should be no sur-
prise that the default Domain value for a SkyFrame is SKY. Since there is only
one sky, you probably won’t need to change this very often.

SPECTRUM
Identifies the domain used to describe positions within an electro-magnetic spec-
trum. The AST SpecFrame (§9) class describes positions within this domain,
allowing a wide range of different coordinate systems to be used (frequency,
wavelength, etc). The default Domain value for a SpecFrame is SPECTRUM.

TIME
Identifies the domain used to describe moments in time. The AST TimeFrame
class describes positions within this domain, allowing a wide range of different

coordinate systems and timescales to be used. The default Domain value for a
TimeFrame is TIME.

Although we have drawn a necessary distinction here between the GRID and PIXEL domains,
we will continue to refer in general terms to image “pixels” and “pixel coordinates” whenever
this distinction is not important. This should not be taken to imply that the GRID convention
for numbering pixels is excluded—in fact, it is usually to be preferred (at the level of data
handling being discussed in this document) and we recommend it.

7.14 The Unit Attribute

Fach axis of a Frame has a Unit attribute which holds the physical units used to describe
positions on the axis. The index of the axis to which the attribute refers should normally be
placed in parentheses following the attribute name (“Unit(2)” for instance). However, if the
Frame has only a single axis, then the axis index can be omitted.

In versions of AST prior to version 2.0, the Unit attribute was nothing more than a descriptive
string intended purely for human readers—no part of the AST system used the Unit string for
any purpose (other than inclusion in axis labels produced by the Plot class). In particular, no
account was taken of the Unit attribute when finding the Mapping between two Frames. Thus
if the conversion between a pair of 1-dimensional Frames representing velocity was found (using
astConvert ) the returned Mapping would always be a UnitMap, even if the Unit attributes of
the two Frames were “km/h” and “m/s”. This behaviour is referred to below as a passive Unit
attribute.

As of AST version 2.0, a facility exists which allows the Unit attribute to be active; that is,
differences in the Unit attribute may be taken into account when finding the Mapping between
two Frames. In order to minimise the risk of breaking older software, the default behaviour
of simple Frames and SkyFrames is unchanged from previous versions (i.e. they have passive
Unit attributes). However, the new functions astSetActiveUnit and astGetActiveUnit allow this
default behaviour to be changed. The SpecFrame and TimeFrame classes always have an active
Unit attribute (attempts to change this are ignored).

For instance, consider the above example of two 1-dimensional Frames describing velocity. These
Frames can be created as follows:
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AstFrame *framel, *xframe2;
framel = astFrame( 1, "Domain=VELOCITY,Unit=km/h" );
frame2 = astFrame( 1, "Domain=VELOCITY,Unit=m/s" );

By default, these Frames have passive Unit attributes, and so an attempt to find a Mapping
between them would ignore the difference in their Unit attributes and return a unit Mapping.
To avoid this, we indicate that we want these Frames to have active Unit attributes, as follows:

astSetActiveUnit( framel, 1 );
astSetActiveUnit( frame2, 1 )

If we then find the Mapping between them as follows:
AstFrameSet *cvt;
cvt = astConvert( framel, frame2, "" );

the Mapping contained within the FrameSet returned by astConvert will be a one-dimensional
ZoomMap which simply scales its input (a velocity in km/h) by a factor of 0.278 to create its
output (a velocity in m/s).

In fact we need not have set the Unit attribute active in “framel” since the behaviour of
astConvert is determined by its “to” Frame (the second Frame parameter).

7.14.1 The Syntax for Unit Strings

Conversion between units systems relies on the use of a specific syntax for the Unit attribute. If
the value of the Unit attribute does not conform to this syntax, then an error will be reported
if an attempt is made to use it to determine an inter-unit Mapping (this will never happen if
the Unit attribute is passive).

The adopted syntax is that described in FITS-WCS paper I ” Representation of World Coordinate
in FITS” by Greisen & Calabretta. We distinguish here between “basic” units and “derived”
units: derived units are defined in terms of other units (either derived or basic), whereas basic
units have no such definitions. Derived units may be represented by their own symbol (e.g.
“Jy”—the Jansky) or by a mathematical expression which combines other symbols and constants
to form a definition of the unit (e.g. “km/s”—Xkilometres per second). Unit symbols may be
prefixed by a string representing a standard multiple or sub-multiple.

In addition to the unit symbols listed in FITS-WCS Paper I, any other arbitrary unit symbol
may be used, with the proviso that it will not be possible to convert between Frames using
such units. The exception to this is if both Frames refer to the same unknown unit string. For
instance, an axis with unknown unit symbol ”"flop” could be converted to an axis with unit
”Mflop” (Mega-flop).

Unit symbols (optionally prefixed with a multiple or sub-multiple) can be combined together
using a limited range of mathematical operators and functions, to produce new units. Such
expressions may also contain parentheses and numerical constants (these may optionally use
“scientific” notation including an “E” character to represent the power of 10).

The following tables list the symbols for the basic and derived units which may be included in
a units string, the standard prefixes for multiples and sub-multiples, and the strings which may
be used to represent mathematical operators and functions.
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Basic units

Quantity Symbol | Full Name
length m metre
mass g gram
time S second
plane angle rad radian
solid angle ST steradian
temperature K Kelvin
electric current A Ampere
amount of substance | mol mole
luminous intensity cd candela

7.14.2 Side-effects of Changing the Unit attribute

If an Axis has an active Unit attribute, changing its value (either by setting a new value or by
clearing it so that the default value is re-instated) may cause the Label and Symbol attributes
to be changed accordingly. For instance, if an Axis has Unit, Label and Symbol of “Hz”,
“Frequency” and “nu”, then changing its Unit attribute to “log(Hz)” will cause AST to change
its Label and Symbol to “log(Frequency)” and “Log(nu)”. These changes are only made if the
Unit attribute is active, and a Mapping can be found from the old units to the new units. On
the other hand, changing the Unit from “Hz” to “MHz” would not cause any change to the
Label or Symbol attributes.
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Derived units

Quantity Symbol Full Name Definition

area barn barn 1.0E-28 m**2
area pix pixel
area pixel pixel
electric capacitance | F Farad Cc/V
electric charge C Coulomb As
electric conductance | S Siemens A/V
electric potential \% Volt J/C
electric resistance Ohm Ohm V/A
energy J Joule N m
energy Ry Rydberg 13.605692 eV
energy eV electron-Volt 1.60217733E-19 J
energy erg erg 1.0E-7 J
events count count
events ct count
events ph photon
events photon photon
flux density Jy Jansky 1.0E-26 W /m**2 /Hz
flux density R Rayleigh 1.0E10/(4*PI) photon.m**-2 /s/sr
flux density mag magnitude
force N Newton kg m/s**2
frequency Hz Hertz 1/s
illuminance Ix lux Im/m**2
inductance H Henry Wb/A
length AU astronomical unit 1.49598E11 m
length Angstrom | Angstrom 1.0E-10 m
length lyr light year 9.460730E15 m
length pc parsec 3.0867E16 m
length solRad solar radius 6.9599E8 m
luminosity solLum solar luminosity 3.8268E26 W
luminous flux Im lumen cd sr
magnetic field G Gauss 1.0E-4 T
magnetic flux Wb Weber Vs
mass solMass solar mass 1.9891E30 kg
mass u unified atomic mass unit | 1.6605387E-27 kg
magnetic flux density | T Tesla Wb /m**2
plane angle arcmin arc-minute 1/60 deg
plane angle arcsec arc-second 1/3600 deg
plane angle mas milli-arcsecond 1/3600000 deg
plane angle deg degree pi/180 rad
power W Watt J/s
pressure, stress Pa Pascal N/m**2
time a year 31557600 s
time d day 86400 s
time h hour 3600 s
time yr year 31557600 s
time min minute 60 s

D Debye 1.0E-29/3 C.m
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Prefixes for multiples & sub-multiples
Sub-multiple Name Prefix | Sub-multiple Name Prefix
1071 deci d 10 deca da
10~2 centi ¢ 102 hecto h
1073 milli m 10 kilo  k
10~6 micro u 106 mega M
1079 nano n 10° giga G
1012 pico P 1012 tera T
10~15 femto f 1019 peta P
10-18 atto a 10%8 exa E
102 zepto 7z 102! zetta 7
1072 yocto y 10% yotta Y

Mathematical operators & functions

String Meaning
syml sym2 | multiplication (a space)
sym1*sym2 | multiplication (an asterisk)
syml.sym2 | multiplication (a dot)
syml/sym2 | division
syml1**y exponentiation (y must be a numerical constant)
syml-y exponentiation (y must be a numerical constant)
log(sym1) common logarithm
In(sym1) natural logarithm
exp(syml) | exponential
sqrt(syml) | square root
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8 Celestial Coordinate Systems (SkyFrames)

A Frame which is specialised for representing coordinate systems on the celestial sphere is
obviously of great importance in astronomy. The SkyFrame is such a Frame. In this section we
examine the additional properties and behaviour of a SkyFrame that distinguish it from a basic
Frame (§7).

8.1 The SkyFrame Model

A SkyFrame is, of course, a Frame (§7) and also a Mapping (§5), so it inherits all the properties
and behaviour of these two ancestral classes. When used as a Mapping, a SkyFrame implements
a unit transformation, exactly like a basic Frame (§7.3) or a UnitMap, so this aspect of its
behaviour is not of great importance.

When used as a Frame, however, a SkyFrame represents a 2-dimensional spherical coordinate
system, in which the shortest distance between two points is a great circle. A SkyFrame there-
fore always has exactly two axes which represent the longitude and latitude of a coordinate
system residing on the celestial sphere. Many such coordinate systems can be represented by a
SkyFrame, as we will see shortly.

A SkyFrame can represent any of the commonly used celestial coordinate systems. Optionally,
the origin of the longitude/latitude system can be moved to any specified point in the standard
celestial system, allowing a SkyFrame to represent offsets from a specified sky position.

When it is first created, a SkyFrame’s axes are always in the order (longitude, latitude) but this
can be changed, if required, by using the astPermAxes function (§7.9). The order of the axes can
be determined at any time using the LatAxis and LonAxis attributes. A SkyFrame’s coordinate
values are always stored as angles in (double precision) radians, regardless of the setting of the
Unit attribute.

8.2 Creating a SkyFrame

The SkyFrame constructor function is particularly simple and a SkyFrame with default attributes
is created as follows:

#include "ast.h"
AstSkyFrame *skyframe;

skyframe = astSkyFrame( "" );

Such a SkyFrame would represent the default celestial coordinate system which, at present, is
the ICRS system (the default was "FK5(J2000)” in versions of AST prior to 3.0).

8.3 Specifying a Particular Celestial Coordinate System

For many purposes, the ICRS coordinate system is perfectly adequate. In order to support
conversion between a variety of celestial coordinate systems, however, you can create SkyFrames
that represent any of these.
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Selection of a particular coordinate system is performed simply by setting a value for the
SkyFrame’s (character string) System attribute. This setting is most conveniently done when the
SkyFrame is created. For example, a SkyFrame representing the old FK4 (B1950.0) coordinate
system would be created by:

skyframe = astSkyFrame( "System=FK4" );

Note that specifying “System=FK4” also changes the associated equinox (from J2000.0 to
B1950.0). This is because the default value of the SkyFrame’s Equinox attribute (§8.4) de-
pends on the System attribute setting.

You may change the System value at any time, although this is not usually needed. The values
supported are set out in the attribute’s description in Appendix C and include a variety of
equatorial coordinate systems, together with ecliptic and galactic coordinates.

General spherical coordinates are supported by specifying “System=unknown”. You should
note, though, that no Mapping can be created to convert between “unknown” coordinates and
any of the other celestial coordinate systems (see §12 ).

8.4 Attributes which Qualify Celestial Coordinate Systems

Many celestial coordinate systems have some additional free parameters which serve to identify
a particular coordinate system from amongst a broader class of related coordinate systems. For
example, the FK5 (J2010.0) system is distinguished from the FK5 (J2000.0) system by a different
equinox—and the coordinates of a fixed astronomical source would have different values when
expressed in these two systems.

In AST, these free parameters are represented by additional SkyFrame attributes, each of which
has a default appropriate to (i.e. defined by) the setting of the main System attribute. Each of
these qualifying attributes may, however, be assigned an explicit value so as to select a particular
coordinate system. Note, it is usually best to assign explicit values whenever possible rather
than relying on defaults. Attribute should only be left at their default value if you “don’t care”
what value is used. In certain circumstances (particularly, when aligning two Frames), a default
value for an attribute may be replaced by the value from another similar Frame. Such value
replacement can be prevented by assigning an explicit value to the attribute, rather than simply
relying on the default.

The main SkyFrame attributes which qualify the System attribute are:

Epoch
This attribute is inherited from the Frame class. It gives the moment in time
when the coordinates are correct for the astronomical source under study (usu-
ally the date of observation).

Equinox
This value is used to qualify celestial coordinate systems that are notionally
based on the Earth’s equator and/or the ecliptic (the plane of the Earth’s orbit
around the Sun). The position of either of these planes is difficult to specify
precisely, so in practice a model mean equator and/or ecliptic are used instead.
These, together with the point on the sky that defines the coordinate origin
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(termed the mean equinox) move with time according to some model which
smoothes out the more rapid fluctuations. The SkyFrame class supports both
the old FK4 model and the newer FK5 one.

Coordinates expressed in any of these systems vary with time due to movement
(by definition) of the coordinate system itself, and must therefore be qualified
by a moment in time (the epoch of the mean equinox, or “equinox” for short)
which specifies the position of the model coordinate system on the sky. This is
the role of the Equinox attribute.

Note that it is quite valid and common to relate the position of a source to an
equinox other than the date of observation. Usually a standard equinox such
as J2000.0 is used, meaning that the coordinates are referred to axes defined by

where the model mean equator and ecliptic would lie on the sky at the Julian
epoch J2000.0.

For further details of these attributes you should consult their descriptions in Appendix C and
for details of the System settings for which they are relevant, see the description of the System
attribute (also in Appendix C). For the interested reader, an excellent overview of celestial
coordinate systems can also be found in the documentation for the SLALIB library (SUN/67).

The value of these qualifying attributes is most conveniently set at the same time as the System
value, e.g. when a SkyFrame is created. For instance:

skyframe = astSkyFrame( "System=Ecliptic, Equinox=J2005.5" );

would create a SkyFrame representing an ecliptic coordinate system referred to the mean equinox
and ecliptic of Julian epoch J2005.5.

Note that it does no harm to assign values to qualifying attributes which are not relevant to
the main System value. Any such values are stored, but are not used unless the System value is
later set so that they become relevant.

8.5 Using Default SkyFrame Attributes

The default values supplied for many SkyFrame attributes will depend on the value of the
SkyFrame’s System attribute. In practice, this means that there is usually little need to specify
many of these attributes explicitly unless you have some special requirement. This can be
illustrated by using astShow to examine a SkyFrame, as follows:

astShow( astSkyFrame( "System=FK4-NO-E, Epoch=1958" ) );
The output from this might look like the following:

Begin SkyFrame # Description of celestial coordinate system
# Title = "FK4 equatorial coordinates; no E-terms; mean equinox B1950.0;
epoch B1958.0" # Title of coordinate system
Naxes = 2  # Number of coordinate axes
# Domain = "SKY" # Coordinate system domain
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Epoch = 1958 # Besselian epoch of observation
# Lbll = "Right ascension" # Label for axis 1
# Lbl2 = "Declination" # Label for axis 2
System = "FK4-NO-E" # Coordinate system type
# Unil = "hh:mm:ss.s" # Units for axis 1
# Uni2 = "ddd:mm:ss" # Units for axis 2
# Dirl =0 # Plot axis 1 in reverse direction
# Bot2 = -1.5707963267949 # Lowest legal axis value
# Top2 = 1.5707963267949 # Highest legal axis value
Ax1 = # Axis number 1
Begin SkyAxis # Celestial coordinate axis
End SkyAxis
Ax2 = # Axis number 2
Begin SkyAxis # Celestial coordinate axis
End SkyAxis
IsA Frame # Coordinate system description
#  Eqnox = 1950 # Besselian epoch of mean equinox

End SkyFrame

Note that the defaults (indicated by the “#” comment character at the start of the line) for
attributes such as the Title, axis Labels and Format specifiers are all set to values appropriate
for the particular equatorial coordinate system that the SkyFrame represents.

This means, for example, that if we were to use this SkyFrame to format a right ascension value
stored in radians using astFormat (§7.6), it would automatically result in a string in sexagesimal
notation (such as “12:14:35.7”) suitable for display. If we changed the value of the SkyFrame’s
Digits attribute (which is inherited from the Frame class), the number of digits appearing would
also change accordingly.

These choices would be appropriate for a System value of “FK4-NO-E”, but if a different System
value were set, the defaults would be correspondingly different. For example, ecliptic longitude
is traditionally expressed in degrees, so setting “System=ecliptic” would result in coordinate
values being formatted as degrees by default.

Of course, if you do not like any of these defaults, you may always over-ride them by setting
explicit attribute values yourself.

8.6 Formatting Celestial Coordinates

SkyFrames use astFormat for formatting coordinate values in the same way as other Frames
(§7.6). However, they offer a different set of formatting options more appropriate to celestial
coordinates.

The Digits attribute of a SkyFrame behaves in essentially the same way as for a basic Frame
(§7.6), so the precision with which celestial coordinates are displayed can also be adjusted in this
way. However, the range of format specifiers that can be given for the Format(axis) attribute,
and the default format resulting from any particular Digits value, is different.

The syntax of SkyFrame format specifiers is detailed under the description of the Format(axis)
attribute in Appendix C. Briefly, however, it allows celestial coordinates to be expressed either
as angles or times and to include one or more of the fields:
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e degrees or hours
e arc-minutes or minutes

e arc-seconds or seconds

with a specified number of decimal places for the final field. A range of field separators is also
available, as the following examples show:

Format Specifier | Example Formatted Value

d 219

d.3 219.123

dm 219:05

dm.2 219:05.44
dms 219:05:42
hms.1 15:44:13.8
bdms . 2 219 05 42.81
lhms.3 15h44m13.88s
+zlhms +06h10m44s
ms.1 13145:42.8
Imst.3 876m22.854s
s.2 788742.81

Note the following key points:

e The required fields are specified using characters chosen from either “dms” or “hms”
according to whether the value is to be formatted as an angle (in degrees) or a time (in
hours).

e If no degrees or hours field is required, the distinction between angle and time may be
made by including “t” to request time.

e The number of decimal places (for the final field) is indicated using “.” followed by an
integer. An asterisk can be used in place of an integer, in which case the number of decimal
places is chosen so that the total number of digits in the formatted value is equal to the
value of the Digits attribute.

e “b” causes fields to be separated by blanks, while “I” causes them to be separated by the
appropriate letters (the default being a colon).

e “z” causes padding with leading zeros.
e “4” cause a plus sign to be prefixed to positive values (negative values always have a
minus sign).

The formatting performed by a SkyFrame is also influenced by the AsTime(axis) attribute,
which has a boolean (integer) value for each SkyFrame axis. It determines whether the default
format specifier for an axis will present values as angles (e.g. in degrees) if it is zero, or as times
(e.g. in hours) if it is non-zero.
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The default AsTime value depends on the celestial coordinate system which the SkyFrame
represents which, in turn, depends on its System attribute value. For example, equatorial
longitude values (right ascension) are normally expressed in hours, whereas ecliptic longitudes
are normally expressed in degrees, so their default AsTime values will reflect this difference.

The value of the AsTime attribute may be set explicitly to over-ride these defaults if required,
with the formatting precision being determined by the Digits/Digits(axis) value. Alternatively,
the Format(axis) attribute may be set explicitly to specify both the format and precision re-
quired. Setting an explicit Format value always over-rides the effects of both the Digits and
AsTime attributes (unless the Format value does not specify the required number of decimal
places, in which case Digits is used to determine the default number of decimal places)

8.7 Reading Formatted Celestial Coordinates

The process of converting formatted celestial coordinates, such as might be produced by the
astFormat function (§8.6), into numerical (double) coordinate values is performed by using
astUnformat (§7.8) and passing it a pointer to a SkyFrame. The use of a SkyFrame means that
the range of input formats accepted is appropriate to positions on the sky expressed as angles
and/or times, while the returned value is in radians.

The following describes the forms of celestial coordinate which are supported:

e You may supply an optional sign, followed by between one and three fields representing
either degrees, arc-minutes, arc-seconds or hours, minutes, seconds (e.g. “—12 42 03”).

e Each field should consist of a sequence of one or more digits, which may include leading
zeros. At most one field may contain a decimal point, in which case it is taken to be the
final field (e.g. decimal degrees might be given as “124.707”, while degrees and decimal
arc-minutes might be given as “—13 33.8”).

e The first field given may take any value, allowing angles and times outside the conventional
ranges to be represented. However, subsequent fields must have values of less than 60 (e.g.
“720 45 317 is valid, whereas “11 45 61” is not).

[T

e Fields may be separated by white space or by “:” (colon), but the choice of separator must
be used consistently throughout the value. Additional white space may be present around
fields and separators (e.g. “— 2: 04 : 7.17).

e The following field identification characters may be used as separators to replace those
above (or may be appended to the final field), in order to identify the field to which they
are appended:

d - degrees

h — hours

m — minutes (of arc or time)
s — seconds (of arc or time)
)

— arc-minutes
" — arc-seconds

Either lower or upper case may be used. Fields must be given in order of decreasing
significance (e.g. “—11D 3’ 14.4"” or “22h14m11.2s”).
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e The presence of certain field identification characters indicates whether the value is to be
interpreted as an angle or a time (with 24 hours corresponding to 360 degrees), as follows:

d — angle
> — angle
" — angle
h - time

Incompatible angle/time identification characters may not be mixed (e.g. “10h14°3"” is
not valid). The remaining field identification characters and separators do not specify a
preference for an angle or a time and may be used with either.

e If no preference for an angle or a time is expressed anywhere within the value, then it
is interpreted as an angle if the Format attribute string associated with the SkyFrame
axis generates an angle and as a time otherwise. This ensures that values produced by
astFormat (§8.6) are correctly interpreted by astUnformat.

e Fields may be omitted, in which case they default to zero. The remaining fields may
be identified by using appropriate field identification characters (see above) and/or by
adding extra colon separators (e.g. “—05m13s” is equivalent to “—:05:13”). If a field is
not identified explicitly, it is assumed that adjacent fields have been given, after taking
account of any extra separator characters. For example:

10d — degrees

10d12 - degrees and arc-minutes

11:14" - arc-minutes and arc-seconds

9h13s - hours and seconds of time

:45:33  — minutes and seconds (of arc or time)
:55: — minutes (of arc or time)

213 — seconds (of arc or time)

—6::2.5 — degrees/hours and seconds (of arc or time)
07ml14 — minutes and seconds (of arc or time)
—8:14> — degrees and arc-minutes

—h3:14 - minutes and seconds of time

h:2.1 — seconds of time

o If fields are omitted in such a way that the remaining ones cannot be identified uniquely
(e.g. “01:02”), then the first field (either given explicitly or implied by an extra leading
colon separator) is taken to be the most significant field that astFormat would produce
when formatting a value (using the Format attribute associated with the SkyFrame axis).
By default, this means that the first field will normally be interpreted as degrees or hours.
However, if this does not result in consistent field identification, then the last field (either
given explicitly or implied by an extra trailing colon separator) is taken to to be the least
significant field that astFormat would produce.

This final convention is intended to ensure that values formatted by astFormat which contain
less than three fields will be correctly interpreted if read back using astUnformat, even if they
do not contain field identification characters. However, it also affects other forms of input.
For example, if the Format(axis) string were set to “mst.1” (producing two fields representing
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minutes and seconds of time), then formatted input would be interpreted by astUnformat as
follows:

1213 — minutes and seconds

12 — minutes

:13 — seconds

—18: — minutes

12.8 — minutes

123 — hours, minutes and seconds
4’ — arc-minutes

60::"  — degrees

—23:" — arc-minutes

—33h - hours

(in the last four cases, explicit field identification has been given which overrides the implicit
identification).

Alternatively, if the Format(axis) string were set to “s.3” (producing only an arc-seconds field),
then formatted input would be interpreted by astUnformat as follows:

12.8° - arc-seconds

12 13 — arc-minutes and arc-seconds

112 — arc-seconds

13: — arc-minutes

123 — degrees, arc-minutes and arc-seconds

In general, if you are preparing formatted input data containing celestial coordinates and wish
to omit certain fields, then you are advised to identify clearly those that you do provide by using
the appropriate field identification characters and/or extra colon separators. This prevents you
depending on the implicit field identification described above which, in turn, depends on an
appropriate Format(axis) string having been set.

When writing software, it is also a good idea to set the Format(axis) string so that data input
will be as simple as possible for the user. Unless some special effect is desired, this normally
means that it should contain “d” or “h” to ensure that the first field entered by the user will be
interpreted as degrees or hours, unless otherwise identified. This is the normal behaviour unless
an explicit Format(axis) value has been set to override the default.

8.8 Representing Offsets from a Specified Sky Position

A SkyFrame can be modified so that its longitude and latitude axes are referred to an origin
at any specified sky position. Such a coordinate system is referred to as an “offset” coordinate
system. First, the System attribute should be set to represent the celestial coordinate system
in which the origin is to be specified. Then the SkyRef attribute should be set to hold the
coordinates of the origin within the selected celestial coordinate system.

By default, “north” in the new offset coordinate system is parallel to north in the original celestial
coordinate system. However, the direction of north in the offset system can be controlled by
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assigning a value to the SkyRefP attribute. This attribute should be assigned the celestial
coordinates of a point which is on the zero longitude meridian and which has non-zero latitude.

By default, the position given by the SkyRef attribute is used as the origin of the new longi-
tude/latitude system, but an option exists to use it as the north pole of the system instead. This
option is controlled by the SkyRefls attribute. The choice of value for SkyRefls depends on what
sort of offset coordinate system you want. Setting SkyRefls to “Origin” (the default) produces
an offset coordinate system which is approximately Cartesian close to the specified position.
Setting SkyRefls to “Pole” produces an offset coordinate system which is approximately Polar
close to the specified position.
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9 Spectral Coordinate Systems (SpecFrames)

The SpecFrame is a Frame which is specialised for representing coordinate systems which de-
scribe a position within an electro-magnetic spectrum. In this section we examine the additional
properties and behaviour of a SpecFrame that distinguish it from a basic Frame (§7).

9.1 The SpecFrame Model

As for a SkyFrame, a SpecFrame is a Frame (§7) and also a Mapping (§5), so it inherits all the
properties and behaviour of these two ancestral classes. When used as a Mapping, a SpecFrame
implements a unit transformation, exactly like a basic Frame (§7.3) or a UnitMap, so this aspect
of its behaviour is not of great importance.

When used as a Frame, however, a SpecFrame represents a wide range of different 1-dimensional
coordinate system which can be used to describe positions within a spectrum. The options
available largely mirror those described in the FITS-WCS paper III Representations of spectral
coordinates in FITS (Greisen, Valdes, Calabretta & Allen).

9.2 Creating a SpecFrame

The SpecFrame constructor function is particularly simple and a SpecFrame with default at-
tributes is created as follows:

#include "ast.h"
AstSpecFrame *specframe;

specframe = astSpecFrame( "" );

Such a SpecFrame would represent the default coordinate system which is heliocentric wave-
length in metres (i.e. wavelength corrected to take into account the Doppler shift caused by the
velocity of the observer around the sun).

9.3 Specifying a Particular Spectral Coordinate System

Selection of a particular coordinate system is performed simply by setting a value for the
SpecFrame’s (character string) System attribute. This setting is most conveniently done when
the SpecFrame is created. For example, a SpecFrame representing Energy would be created by:

specframe = astSpecFrame( "System=Energy" );

Note that specifying “System=Energy” also changes the associated Unit (from metres to Joules).
This is because the default value of the SpecFrame’s Unit attribute depends on the System
attribute setting.

You may change the System value at any time, although this is not usually needed. The values
supported are set out in the attribute’s description in Appendix C and include a variety of
velocity systems, together with frequency, wavelength, energy, wave-number, etc.
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9.4 Attributes which Qualify Spectral Coordinate Systems

Many spectral coordinate systems have some additional free parameters which serve to identify
a particular coordinate system from amongst a broader class of related coordinate systems. For
example, the velocity systems are all parameterised by a rest frequency—the frequency which
defines zero velocity, and all coordinate systems are qualified by a ‘standard of rest” which
indicates the rest frame to which the values refer.

In AST, these free parameters are represented by additional SpecFrame attributes, each of which
has a default appropriate to (i.e. defined by) the setting of the main System attribute. Each of
these qualifying attributes may, however, be assigned an explicit value so as to select a particular
coordinate system. Note, it is usually best to assign explicit values whenever possible rather
than relying on defaults. Attribute should only be left at their default value if you “don’t care”
what value is used. In certain circumstances (particularly, when aligning two Frames), a default
value for an attribute may be replaced by the value from another similar Frame. Such value
replacement can be prevented by assigning an explicit value to the attribute, rather than simply
relying on the default.

The main SpecFrame attributes which qualify the System attribute are:

Epoch
This attribute is inherited from the Frame class. It gives the moment in time
when the coordinates are correct for the astronomical source under study (usu-
ally the date of observation). It is needed in order to calculate the Doppler shift
produced by the velocity of the observer relative to the centre of the earth, and
of the earth relative to the sun.

StdOfRest
This specifies the rest frame in which the coordinates are correct. Transforming
between different standards of rest involves taking account of the Doppler shift
introduced by the relative motion of the two standards of rest.

RestFreq
Specifies the frequency which correspond to zero velocity. When setting a value
for this attribute, the value may be supplied as a wavelength (including an
indication of the units being used, “nm” “Angstrom”, etc.), which will be au-
tomatically be converted to a frequency.

RefRA
Specifies the RA (FK5 J2000) of the source. This is used when converting
between standards of rest. It specifies the direction along which the component
of the relative velocity of the two standards of rest is taken.

RefDec
Specifies the Dec (FK5 J2000) of the source. Used in conjunction with REFRA.

SourceVel
This defines the “source” standard of rest. This is a rest frame which is mov-
ing towards the position given by RefRA and RefDec, at a velocity given by
SourceVel. The velocity is stored internally as a heliocentric velocity, but can
be given in any of the other supported standards of rest.
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For further details of these attributes you should consult their descriptions in Appendix C and
for details of the System settings for which they are relevant, see the description of the System
attribute (also in Appendix C).

Note that it does no harm to assign values to qualifying attributes which are not relevant to
the main System value. Any such values are stored, but are not used unless the System value is
later set so that they become relevant.

9.5 Using Default SpecFrame Attributes

The default values supplied for many SpecFrame attributes will depend on the value of the
SpecFrame’s System attribute. In practice, this means that there is usually little need to specify
many of these attributes explicitly unless you have some special requirement. This can be
illustrated by using astShow to examine a SpecFrame, as follows:

astShow( astSpecFrame( "System=Vopt, RestFreq=250 GHz" ) );
The output from this might look like the following:

Begin SpecFrame # Description of spectral coordinate system
# Title = "Optical velocity, rest frequency = 250 GHz" # Title
of coordinate system

Naxes = 1  # Number of coordinate axes

# Domain = "SPECTRUM" # Coordinate system domain
#  Epoch = 2000 # Julian epoch of observation
# Lbll = "Optical velocity" # Label for axis 1
System = "VOPT" # Coordinate system type
# Unil = "km/s" # Units for axis 1
Ax1 = # Axis number 1
Begin Axis # Coordinate axis
End Axis
IsA Frame # Coordinate system description
# SoR = "Heliocentric" # Standard of rest
RstFrq = 250000000000 # Rest frequency (Hz)

End SpecFrame

Note that the defaults (indicated by the “#” comment character at the start of the line) for
attributes such as the Title, axis Labels and Unit specifiers are all set to values appropriate for
the particular velocity system that the SpecFrame represents.

These choices would be appropriate for a System value of “Vopt”, but if a different System value
were set, the defaults would be correspondingly different. For example, by default frequency is
measured in units of GHz, not km/s, so setting “System=freq” would change the appropriate
line above from:

# Unil = "km/s" # Units for axis 1

to
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# Unil = "GHz" # Units for axis 1

Of course, if you do not like any of these defaults, you may always over-ride them by setting
explicit attribute values yourself. For instance, you may choose to have your frequency axis
expressed in “kHz” rather than “GHz”. To do this simply set the attribute value as follows:

astSetC( specframe, "Unit", "kHz" );

No error will be reported if you accidentally set an inappropriate Unit value (say ”J” - Joules)—
after all, AST cannot tell what you are about to do, and you may be about to change the System
value to “Energy”. However, an error will be reported if you attempt to find a conversion between
two SpecFrames (for instance using astConvert ) if either SpecFrame has a Unit value which is
inappropriate for its System value.

SpecFrame attributes, like all other attributes, all have default value. However, be aware that
for some attributes these default values can never be more than “a legal numerical value” and
have no astronomical significance. For instance, the RefRA and RefDec attributes (which give
the source position) both have a default value of zero. So unless your source happens to be
at that point (highly unlikely!) you will need to set new values. Likewise, the RestFreq (rest
frequency) attribute has an arbitrary default value of 1.0E5 GHz. Some operations are not
affected by inappropriate values for these attributes (for instance, converting from frequency to
wavelength, changing axis units, etc), but some are. For instance, converting from frequency
to velocity requires a correct rest frequency, moving between different standards of rest requires
a correct source position. The moral is, always set explicit values for as many attributes as
possible.

9.6 Creating Spectral Cubes

You can use a SpeckFrame to describe the spectral axis in a data cube containing two spatial axes
and a spectral axis. To do this you would create an appropriate SpecFrame, together with a
2-dimensional Frame (often a SkyFrame) to describe the spatial axes. You would then combine
these two Frames together into a single CmpFrame.

AstSkyFrame *skyframe;
AstSpecFrame *specframe;
AstCmpFrame *cmpframe;

skyframe = astSkyFrame( "Epoch=J2002" );
specframe = astSpecFrame( "System=Freq,StdOfRest=LSRK" );
cmpframe = astCmpFrame( skyframe, specframe, "" );

In the resulting CmpFrame, axis 1 will be RA, axis 2 will be Dec and axis 3 will be Frequency.
If this is not the order you want, you can permute the axes using astPermAxes.

There is one potential problem with this approach if you are interested in unusually high ac-
curacy. Conversion between different standards of rest involves taking account of the Doppler
shift caused by the relative motion of the two standards of rest. At some point this involves
finding the component of the relative velocity in the direction of interest. For a SpecFrame, this
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direction is always given by the RefRA and RefDec attributes, even if the SpecFrame is embed-
ded within a CmpFrame as above. It would be more appropriate if this “direction of interest”
was specified by the values passed into the CmpFrame on the RA and DEC axes, allowing each
pixel within a data cube to have a slightly different correction for Doppler shift.

Unfortunately, the SpecFrame class cannot do this (since it is purely a 1-dimensional Frame),
and so some small degree of error will be introduced when converting between standards of rest,
the size of the error varying from pixel to pixel. It is hoped that at some point in the future a
sub-class of CmpFrame (a SpecCubeFrame) will be added to AST which allows for this spatial
variation in Doppler shift.

The maximum velocity error introduced by this problem is of the order of V « SIN(FOV),
where FFOV is the angular field of view, and V is the relative velocity of the two standards of
rest. As an example, when correcting from the observers rest frame (i.e. the topocentric rest
frame) to the kinematic local standard of rest the maximum value of V' is about 20 km/s, so
for 5 arc-minute field of view the maximum velocity error introduced by the correction will be
about 0.03 km/s. As another example, the maximum error when correcting from the observers
rest frame to the local group is about 5 km/s over a 1 degree field of view.

9.7 Handling Dual-Sideband Spectra

Dual sideband super-heterodyne receivers produce spectra in which each channel contains con-
tributions from two different frequencies, referred to as the “upper sideband frequency” and the
“lower sideband frequency”. In the rest frame of the observer (topocentric), these are related to
each other as follows:

Jiso = 2-fLo — fusb (1)

where fro is a fixed frequency known as the “local oscillator frequency”. In other words, the
local oscillator frequency is always mid-way between any pair of corresponding upper and lower
sideband frequencies'®. If you want to describe the spectral axis of such a spectrum using a
SpecFrame you must choose whether you want the SpecFrame to describe fis or fus - a basic
SpecFrame cannot describe both sidebands simultaneously. However, there is a sub-class of
SpecFrame, called DSBSpecFrame, which overcomes this difficulty.

A DSBSpecFrame has a SideBand attribute which indicates if the DSBSpecFrame is currently
being used to describe the upper or lower sideband spectral axis. The value of this attribute can
be changed at any time. If you use the astConvert function to find the Mapping between two
DSBSpecFrames, the setting for the two SideBand attributes will be taken into account. Thus,
if you take a copy of a DSBSpecFrame, toggle its SideBand attribute, and then use astConvert
to find a Mapping from the original to the modified copy, the resulting Mapping will be of the
form of equation 1 (if the DSBSpecFrame has its StdOfRest attribute set to “Topocentric”).

In general, when finding a Mapping between two arbitrary DSBSpecFrames, the total Mapping
is made of of three parts in series:

16Note, this simple relationship only applies if all frequencies are topocentric.
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1. A Mapping which converts the first DSBSpecFrame into its upper sideband representa-
tion. If the DSBSpecFrame already represents its upper sideband, this Mapping will be a
UnitMap.

2. A Mapping which converts from the first to the second DSBSpecFrame, treating them as if
they were both basic SpecFrames. This takes account of any difference in units, standard
of rest, system, etc between the two DSBSpecFrames.

3. A Mapping which converts the second DSBSpecFrame from its upper sideband representa-
tion to its current sideband. If the DSBSpecFrame currently represents its upper sideband,
this Mapping will be a UnitMap.

If an attempt is made to find the Mapping between a DSBSpecFrame and a basic SpecFrame,
then the DSBSpecFrame will be treated like a basic SpecFrame. In other words, the returned
Mapping will not be affected by the setting of the SideBand attribute (or any of the other
attributes specific to the DSBSpecFrame class).

In practice, the local oscillator frequency for a dual sideband instrument may not be easily
available to an observer. Instead, it is common practice to specify the spectral position of some
central feature in the observation (commonly the centre of the instrument passband), together
with an “intermediate frequency”. Together, these two values allow the local oscillator frequency
to be determined. The intermediate frequency is the difference between the topocentric frequency
at the central spectral position and the topocentric frequency of the local oscillator. So:

fLO = fcentral + fzf (2)

The DSBSpecFrame class uses the DSBCentre attribute to specify the central spectral position
(feentrat), and the IF attribute to specify the intermediate frequency (f;). The DSBCentre
value is given and returned in the spectral system described by the DSBSpecFrame (thus you
do not need to calculate the corresponding topocentric frequency yourself - this will be done
automatically by the DSBSpecFrame when you assign a new value to the DSBCentre attribute).
The value assigned to the IF attribute should always be a topocentric frequency in units of Hz,
however a negative value may be given to indicate that the DSBCentre value is in the upper
sideband (that is, if IF < 0 then feentrar > fro). A positive value for IF indicates that the
DSBCentre value is in the lower sideband (that is, if IF' > 0 then feentral < fLO)-
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10 Time Systems (TimeFrames)

The TimeFrame is a Frame which is specialised for representing moments in time. In this section
we examine the additional properties and behaviour of a TimeFrame that distinguish it from a
basic Frame (§7).

10.1 The TimeFrame Model

As for a SkyFrame, a TimeFrame is a Frame (§7) and also a Mapping (§5), so it inherits all the
properties and behaviour of these two ancestral classes. When used as a Mapping, a TimeFrame
implements a unit transformation, exactly like a basic Frame (§7.3) or a UnitMap, so this aspect
of its behaviour is not of great importance.

When used as a Frame, however, a TimeFrame represents a wide range of different 1-dimensional
coordinate system which can be used to describe moments in time. Absolute times and relative
(i.e. elapsed) times are supported (attribute TimeOrigin), as are a range of different time scales
(attribute TimeScale). An absolute or relative value in any time scale can be represented in
different forms such as Modified Julian Date, Julian Epoch, etc (attribute System). AST extends
the definition of these systems to allow them to be used with any unit of time (attribute Unit).
The TimeFrame class also allows times to formatted as either a simple floating point value or
as a Gregorian date and time of day (attribute Format).

10.2 Creating a TimeFrame

The TimeFrame constructor function is particularly simple and a TimeFrame with default at-
tributes is created as follows:

#include "ast.h"
AstTimeFrame *timeframe;

timeframe = astTimeFrame( "" );

Such a TimeFrame would represent the default coordinate system which is Modified Julian Date
(with the usual units of days) in the International Atomic Time (TAI) time scale.

10.3 Specifying a Particular Time System

By setting the System attribute appropriately, the TimeFrame can represent Julian Date, Mod-
ified Julian Date, Julian Epoch or Besselian Epoch (the time scale is specified by a separate
attribute called TimeScale).

Selection of a particular coordinate system is performed simply by setting a value for the Time-
Frame’s (character string) System attribute. This setting is most conveniently done when the
TimeFrame is created. For example, a TimeFrame representing Julian Epoch would be created
by:
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timeframe = astTimeFrame( "System=JEPOCH" ) ;

Note that specifying “System=JEPOCH” also changes the associated default Unit (from days
to years). This is because the default value of the TimeFrame’s Unit attribute depends on the
System attribute setting.

You may change the System value at any time, although this is not usually needed. The values
supported are set out in the attribute’s description in Appendix C.

10.4 Attributes which Qualify Time Coordinate Systems

Time coordinate systems require some additional free parameters to identify a particular co-
ordinate system from amongst a broader class of related coordinate systems. For example, all
TimeFrames are qualified by the time scale (that is, the physical process used to define the flow
of time), and some require the position of the observer’s clock.

In AST, these free parameters are represented by additional TimeFrame attributes, each of
which has a default appropriate to (i.e. defined by) the setting of the main System attribute.
Each of these qualifying attributes may, however, be assigned an explicit value so as to select a
particular coordinate system. Note, it is usually best to assign explicit values whenever possible
rather than relying on defaults. Attribute should only be left at their default value if you “don’t
care” what value is used. In certain circumstances (particularly, when aligning two Frames), a
default value for an attribute may be replaced by the value from another similar Frame. Such
value replacement can be prevented by assigning an explicit value to the attribute, rather than
simply relying on the default.

The main TimeFrame attributes which qualify the System attribute are:

TimeScale
This specifies the time scale.

LT Offset
This specifies the offset from Local Time to UTC in hours (time zones east of
Greenwich have positive values). Note, AST uses the value as supplied without
making any correction for daylight saving.

TimeOrigin
This specifies the zero point from which time values are measured, within the
system specified by the System attribute. Thus, a value of zero (the default)
indicates that time values represent absolute times. Non-zero values may be
used to indicate that the TimeFrame represents elapsed time since the specified
origin.

For further details of these attributes you should consult their descriptions in Appendix C and
for details of the System settings for which they are relevant, see the description of the System
attribute (also in Appendix C).

Note that it does no harm to assign values to qualifying attributes which are not relevant to
the main System or TimeScale value. Any such values are stored, but are not used unless the
System and/or TimeScale value is later set so that they become relevant.
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11 Compound Frames (CmpFrames)

We now turn to a rather special form of Mapping, the CmpFrame. The Frames we have consid-
ered so far have been atomic, in the sense that they represent pre-defined elementary physical
domains. A CmpFrame, however, is a compound Frame. In essence, it is a structure for con-
taining other Frames and its purpose is to allow those Frames to work together in various
combinations while appearing as a single Object. A CmpFrame’s behaviour is therefore not
pre-defined, but is determined by the other Frames it contains (its “component” Frames).

As with compound Mappings, compound Frames can be nested within each other, forming
arbitrarily complex Frames.

11.1 Creating a CmpFrame

A very common use for a CmpFrame within astronomy is to represent a “spectral cube”. This
is a 3-dimensional Frame in which one of the axes represents position within a spectrum, and
the other two axes represent position on the sky (or some other spatial domain such as the
focal plane of a telescope). As an example, we create such a CmpFrame in which axes 1 and 2
represent Right Ascension and Declination (ICRS), and axis 3 represents wavelength (these are
the default coordinate Systems represented by a SkyFrame and a SpecFrame respectively):

AstSkyFrame *skyframe;
AstSpecFrame *specframe;
AstCmpFrame *cmpframe;

skyframe = astSkyFrame( "" );

specframe = astSpecFrame( "" );
cmpframe = astCmpFrame( skyframe, specframe, "" );

If it was desired to make RA and Dec correspond to axes 1 and 3, with axis 2 being the spectral
axis, then the axes of the CmpFrame created above would need to be permuted as follows:

int perm[ 3 ];

perm[ O 1 = 0;
perm[ 1 1 = 2;
perm[ 2 ] = 1;

astPermAxes( cmpframe, perm );

11.2 The Attributes of a CmpFrame

A CmpFrame is a Frame and so has all the attributes of a Frame. The default value for
the Domain attribute for a CmpFrame is formed by concatenating the Domains of the two
component Frames, separated by a minus sign (“-”).17 The (fixed) value for its System attribute

'71f both component Frames have blank Domains, then the default Domain for the CmpFrame is the string
“CMP”'
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is “Compound”.'® A CmpFrame has no further attributes over and above those common to all
Frames. However, attributes of the two component Frames can be accessed as if they were
attributes of the CmpFrame, as described below.

Frame attributes which are specific to individual axes (such as Label(2), Format(1), etc) simply
mirror the corresponding axes of the relevant component Frame. That is, if the “Label(2)”
attribute of a CmpFrame is accessed, the CmpFrame will forward the access request to the
component Frame which contains axis 2. Thus, default values for axis attributes will be the
same as those provided by the component Frames.

An axis index can optionally be appended to the name of Frames attributes which do not
normally have such an index (System, Domain, Epoch, Title, etc). If this is done, the access
request is forwarded to the component Frame containing the indicated axis. For instance, if a
CmpFrame contains a SpecFrame and a SkyFrame in that order, and the axes have not been
permuted, then getting the value of attribute “System” will return “Compound” as mentioned
above (that is, the System value of the CmpFrame as a whole), whereas getting the value of
attribute “System(1)” will return “Spectral” (that is, the System value of the component Frame
containing axis 1 — the SpecFrame).

This technique is not limited to attributes common to all Frames. For instance, the SkyFrame
class defines an attribute called Equinox which is not held by other classes of Frames. To set a
value for the Equinox attribute of the SkyFrame contained within the above CmpFrame, assign
the value to the “Equinox(2)” attribute of the CmpFrame. Since the SkyFrame defines both
axes 2 and 3 of the CmpFrame, we could equivalently have set a value for “Equinox(3)” since
this would also result in the attribute access being forwarded to the SkyFrame.

Finally, if an attribute is not qualified by a axis index, attempts will be made to access it
using each of the CmpFrame axes in turn. Using the above example of the spectral cube, if an
attempt was made to get the value of attribute “Equinox” (with no axis index), each axis in turn
would be used. Since axis 1 is contained within a SpecFrame, the first attempt would fail since
the SpecFrame class does not have an Equinox attribute. However, the second attempt would
succeed because axis 2 is contained within a SkyFrame which does have an Equinox attribute.
Thus the returned attribute value would be that obtained from the SkyFrame containing axis
2. When getting or testing an attribute value, the returned value is determined by the first axis
which recognises the attribute. When setting an attribute value, all axes which recognises the
attribute have the attribute value set to the given value. Likewise, when clearing an attribute
value, all axes which recognises the attribute have the attribute value cleared.

18 Any attempt to change the System value of a CmpFrame is ignored.
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12 An Introduction to Coordinate System Conversions

In this section, we start to look at techniques for converting between different coordinate systems.
At this stage, the tools we have available are Frames (§7), SkyFrames (§8), SpecFrames (§9),
TimeFrames (§10) and various Mappings (§5). These are sufficient to allow us to begin examining
the problem, but more sophisticated approaches will also emerge later (§14.2).

12.1 Converting between Celestial Coordinate Systems

We begin by examining how to convert between two celestial coordinate systems represented
by SkyFrames, as this is both an illuminating and practical example. Consider the problem of
converting celestial coordinates between:

1. The old FK4 system, with no E terms, a Besselian epoch of 1958.0 and a Besselian equinox
of 1960.0.

2. An ecliptic coordinate system based on the mean equinox and ecliptic of Julian epoch
2010.5.

This example is arbitrary but not completely unrealistic. Unless you already have expertise with
such conversions, you are unlikely to find it straightforward.

Using AST, we begin by creating two SkyFrames to represent these coordinate systems, as
follows:

#include "ast.h"
AstSkyFrame *skyframel, *skyframe2;

skyframel = astSkyFrame( "System=FK4-NO-E, Epoch=B1958, Equinox=B1960" );
skyframe2 = astSkyFrame( "System=Ecliptic, Equinox=J2010.5" );

Note how specifying the coordinate systems consists simply of initialising the attributes of each
SkyFrame appropriately. The next step is to find a way of converting between these SkyFrames.
This is done using astConvert, as follows:

AstFrameSet *cvt;

cvt = astConvert( skyframel, skyframe2, "" );
if ( cvt == AST__NULL ) {

<conversion is not possible>
} else {

<conversion is possible>

}
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The third argument of astConvert is not used here and should be an empty string.

astConvert will return a null result, AST__NULL (as defined in the “ast.h” header file), if
conversion is not possible. In this example, conversion is possible, so it will return a pointer to
a new Object that describes the conversion.

The Object returned is called a FrameSet. We have not discussed FrameSets yet (§13), but for
the present purposes we can consider them simply as Objects that can behave both as Mappings
and as Frames. It is the FrameSet’s behaviour as a Mapping in which we are mainly interested
here, because the Mapping it implements is the one we require—i.e. it converts between the two
celestial coordinate systems (§14.1).

For example, if “alphal” and “deltal” are two arrays containing the longitude and latitude, in
radians, of N points on the sky in the original coordinate system (corresponding to “skyframel”),
then they could be converted into the new coordinate system (represented by “skyframe2”) as
follows:

#define N 10
double alphall N ], deltail[ N 1;
double alpha2[ N ], delta2[ N ];

astTran2( cvt, N, alphal, deltal, 1, alpha2, delta2 );

The new coordinates are returned via the “alpha2” and “delta2” arrays. To transform coordi-
nates in the opposite direction, we simply invert the 5th (boolean int) argument to astTran2, as
follows:

astTran2( cvt, N, alpha2, delta2, 0, alphal, deltal );

The FrameSet returned by astConvert also contains information about the SkyFrames used in
the conversion (§14.1). As we mentioned above, a FrameSet may be used as a Frame and in
this case it behaves like the “destination” Frame used in the conversion (i.e. like “skyframe2”).
We could therefore use the “cvt” FrameSet to calculate the distance between two points (with
coordinates in radians) in the destination coordinate system, using astDistance:

double distance, pointli[ 2 ], point2[ 2 ];

distance = astDistance( cvt, pointl, point2 );

and the result would be the same as if the “skyframe2” SkyFrame had been used.

Another way to see how the FrameSet produced by astConvert retains information about the
coordinate systems involved is to set its Report attribute (inherited from the Mapping class) so
that it displays the coordinates before and after conversion (§4.8):

astSet( cvt, "Report=1" );
astTran2( cvt, N, alphal, deltal, 1, alpha2, delta2 );
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The output from this might look like the following:

(2:06:03.0, 34:22:39) --> (42.1087, 20.2717)
(2:08:20.6, 35:31:24) --> (43.0197, 21.1705)
(2:10:38.1, 36:40:09) --> (43.9295, 22.0716)
(2:12:55.6, 37:48:55) --> (44.8382, 22.9753)
(2:15:13.1, 38:57:40) --> (45.7459, 23.8814)
(2:17:30.6, 40:06:25) --> (46.6528, 24.7901)
(2:19:48.1, 41:15:11) --> (47.5589, 25.7013)
(2:22:05.6, 42:23:56) --> (48.4644, 26.6149)
(2:24:23.1, 43:32:41) --> (49.3695, 27.5311)
(2:26:40.6, 44:41:27) --> (50.2742, 28.4499)

Here, we see that the input FK4 equatorial coordinate values (given in radians) have been
formatted automatically in sexagesimal notation using the conventional hours for right ascension
and degrees for declination. Conversely, the output ecliptic coordinates are shown in decimal
degrees, as is conventional for ecliptic coordinates. Both are displayed using the default precision
of 7 digits.!?

In fact, the “cvt” FrameSet has access to all the information in the original SkyFrames which
were passed to astConvert. If you had set a new Digits attribute value for either of these, the
formatting above would reflect the different precision you requested by displaying a greater or
smaller number of digits.

12.2 Converting between Spectral Coordinate Systems

The principles described in the previous section for converting between celestial coordinate
systems also apply to the task of converting between spectral coordinate systems. As an example,
let’s look at how we might convert between frequency measured in GH z as measured in the rest
frame of the telescope, and radio velocity measured in km/s measured with respect the kinematic
Local Standard of Rest.

First we create a default SpecFrame, and then set its attributes to describe the required radio
velocity system (this is slightly more convenient, given the relatively large number of attributes,
than specifying the attribute values in a single string such as would be passed to the SpecFrame
constructor). We then take a copy of this SpecFrame, and change the attribute values so that
the copy describes the original frequency system (modifying a copy, rather than creating a new
SpecFrame from scratch, avoids the need to specify the epoch, reference position, etc a second
time since they are all inherited by the copy):

#include "ast.h"

AstSpecFrame *specframel, *specframe2;

specframel = astSpecFrame( "" );
astSet( specframel, "System=vradio" );

19The leading digit is zero and is therefore not seen in this particular example.
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astSet( specframel, "Unit=km/s" );

astSet( specframel, "Epoch=1996-0ct-2 12:13:56.985" );
astSet( specframel, "ObsLon=W155:28:18" );

astSet( specframel, "ObsLat=N19:49:34" );

astSet( specframel, "RefRA=18:14:50.6" );

astSet( specframel, "RefDec=-4:40:49" );

astSet( specframel, "RestFreq=230.538 GHz" );

astSet( specframel, "StdOfRest=LSRK" );

specframe2 = astCopy( specframel );

astSet( specframel, "System=freq" );

astSet( specframel, "Unit=GHz" );

astSet( specframel, "StdOfRest=Topocentric" );

Note, the fact that a SpecFrame has only a single axis means that we were able to refer to
the Unit attribute without an axis index. The other attributes are: the time of of observation
(Epoch), the geographical position of the telescope (ObsLat & ObsLon), the position of the
source on the sky (RefRA & RefDec), the rest frequency (RestFreq) and the standard of rest
(StdOfRest).

The next step is to find a way of converting between these SpecFrames. We use exactly the same
code that we did in the previous section where we were converting between celestial coordinate
systems:

AstFrameSet *cvt;

cvt = astConvert( specframel, specframe2, "" );
if ( cvt == AST__NULL ) {

<conversion is not possible>
} else {

<conversion is possible>

}

A before, this will give us a FrameSet (assuming conversion is possible, which should always be
the case for our example), and we can use the FrameSet to convert between the two spectral
coordinate systems. We use astTranl in place of astTran2 since a SpecFrame has only one axis
(unlike a SkyFrame which has two).

For example, if “frq” is an array containing the observed frequency, in GHz, of N spectral
channels (describe by “specframel”), then they could be converted into the new coordinate
system (represented by “specframe2”) as follows:

#define N 10

double frql[ N ];
double vel[ N 1;

astTranl( cvt, N, frq, 1, vel );

The radio velocity values are returned in the “vel” array.
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12.3 Converting between Time Coordinate Systems

All the principles outlined in the previous section about aligning spectral cocordinate systems
(SpecFrames) can be applied directly to the problem of aligning time coordinate systems (Time-
Frames).

12.4 Handling SkyFrame Axis Permutations

We can illustrate an important point if we swap the axis order of either SkyFrame in the example
above (§12.1) before identifying the conversion. Let’s assume we use astPermAxes (§7.9) to do
this to the second SkyFrame, before applying astConvert, as follows:

int perm[ 2] = { 2, 1 };
astPermAxes( skyframe2, perm );
cvt = astConvert( skyframel, skyframe2, "" );
Now, the destination SkyFrame system no longer represents the coordinate system:
(ecliptic longitude, ecliptic latitude)
but instead represents the transposed system:
(ecliptic latitude, ecliptic longitude)

As a consequence, when we use the FrameSet returned by astConvert to apply a coordinate
transformation, we obtain something like the following:

(2:06:03.0, 34:22:39) --> (20.2717, 42.1087)
(2:08:20.6, 35:31:24) —-> (21.1705, 43.0197)
(2:10:38.1, 36:40:09) --> (22.0716, 43.9295)
(2:12:55.6, 37:48:55) --> (22.9753, 44.8382)
(2:15:13.1, 38:57:40) --> (23.8814, 45.7459)
(2:17:30.6, 40:06:25) —-> (24.7901, 46.6528)
(2:19:48.1, 41:15:11) --> (25.7013, 47.5589)
(2:22:05.6, 42:23:56) —-> (26.6149, 48.4644)
(2:24:23.1, 43:32:41) --> (27.5311, 49.3695)
(2:26:40.6, 44:41:27) --> (28.4499, 50.2742)

When compared to the original (§12.1), the output coordinate order has been swapped to com-
pensate for the different destination SkyFrame axis order.

In all, there are four possible axis combinations, corresponding to two possible axis orders for
each of the source and destination SkyFrames, and astConvert will convert correctly between
any of these. The point to note is that a SkyFrame contains knowledge about how to convert
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to and from other SkyFrames. Since its two axes (longitude and latitude) are distinguishable,
the conversion is able to take account of the axis order.

If you need to identify the axes of a SkyFrame explicitly, taking into account any axis permu-
tations, the LatAxis and LonAxis attributes can be used. These are read-only attributes which
give the indices of the latitude and longitude axes respectively.

12.5 Converting Between Frames
Having seen how clever SkyFrames are (§12.1 and §12.4), we will next examine how dumb a

basic Frame can be in comparison. For example, if we create two 2-dimensional Frames and use
astConvert to derive a conversion between them, as follows:

AstFrame *framel, *frame2;

framel = astFrame( 2, "" );
frame2 = astFrame( 2, "" );
cvt = astConvert( framel, frame2, "" );

then the coordinate transformation which the “cvt” FrameSet performs will be as follows:

(1, 2) -—-> (1, 2)
(2, 4) ——> (2, 4
(3, 6) -—> (3, 6)
(4, 8) -—> (4, 8)
(5, 10) -—> (5, 10)

This is an identity transformation, exactly the same as a UnitMap (§5.9). Even if we permute
the axis order of our Frames, as we did above (§12.4), we will fare no better. The conversion
between our two basic Frames will always be an identity transformation.

The reason for this is that, unlike a SkyFrame, all basic Frames start life the same and have
axes that are indistinguishable. Therefore, permuting their axes doesn’t make them look any
different—they still represent the same coordinate system.

12.6 The Choice of Alignment System

In practice, when AST is asked to find a conversion between two Frames describing two different
coordinate systems on a given physical domain, it uses an intermediate “alignment” system.
Thus, when finding a conversion from system A to system B, AST first finds the Mapping from
system A to some alignment system, system C, and then finds the Mapping from this system C
to the required system B. It finally concatenates these two Mappings to get the Mapping from
system A to system B.

One advantage of this is that it cuts down the number of conversion algorithms required. If there
are N different Systems which may be used to describe positions within the Domain, then this
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approach requires about 2 x N conversion algorithms to be written. The alternative approach
of going directly from system A to system B would require about IV x N conversion algorithms.

In addition, the use of an intermediate alignment system highlights the nature of the conversion
process. What do we mean by saying that a Mapping “converts a position in one coordinate
system into the corresponding position in another”? In practice, it means that the input and
output coordinates correspond to the same coordinates in some third coordinate system. The
choice of this third coordinate system, the “alignment” system, can completely alter the nature
of the Mapping. The Frame class has an attribute called AlignSystem which can be used to
specify the alignment system.

As an example, consider the case of aligning two spectra calibrated in radio velocity, but each
with a different rest frequency (each spectrum will be described by a SpecFrame). Since the rest
frequencies differ, a given velocity will correspond to different frequencies in the two spectra. So
when we come to “align” these two spectra (that is, find a Mapping which converts positions
in one SpecFrame to the corresponding positions in the other), we have the choice of aligning
the frequencies or aligning the velocities. Different Mappings will be required to describe these
two forms of alignment. If we set AlignSystem to “Freq” then the returned Mapping will align
the frequencies described by the two SpecFrames. On the other hand, if we set AlignSystem to
“Vradio” then the returned Mapping will align the velocities.

Some choices of alignment system are redundant. For instance, in the above example, changing
the alignment system from frequency to wavelength has no effect on the returned Mapping: if
two spectra are aligned in frequency they will also be aligned in wavelength (assuming the speed
of light doesn’t change).

The default value for AlignSystem depends on the class of Frame. For a SpecFrame, the default
is wavelength (or equivalently, frequency) since this is the system in which observations are
usually made. The SpecFrame class also has an attribute called AlignStdOfRest which allows
the standard of rest of the alignment system to be specified. Similarly, the TimeFrame class
has an attribute called AlignTimeScale which allows the time scale of the alignment system to
be specified. Currently, the SkyFrame uses ICRS as the default for AlignSystem, since this is a
close approximation to an inertial frame of rest.
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13 Coordinate System Networks (FrameSets)

We saw in §12 how astConvert could be used to find a Mapping that inter-relates a pair of
coordinate systems represented by Frames. There is a limitation to this, however, in that it
can only be applied to coordinate systems that are inter-related by suitable conventions. In
the case of celestial coordinates, the relevant conventions are standards set out by the Inter-
national Astronomical Union, and others, that define what these coordinate systems mean. In
practice, however, the relationships between many other coordinate systems are also of practical
importance.

Consider, for example, the focal plane of a telescope upon which an image of the sky is falling.
We could measure positions in this focal plane in millimetres or, if there were a detector system
such as a CCD present, we could count pixels. We could also use celestial coordinates of many
different kinds. All of these systems are equivalent in their effectiveness at specifying positions
in the focal plane, but some are more convenient than others for particular purposes.

Although we could, in principle, convert between all of these focal plane coordinate systems,
there is no pre-defined convention for doing so. This is because the conversions required depend
on where the telescope is pointing and how the CCD is mounted in the focal plane. Clearly,
knowledge about this cannot be built into the AST library and must be supplied in some other
way. Note that this is exactly the same problem as we met in §7.12 when discussing the Domain
attribute—i.e. coordinate systems that apply to different physical domains require that extra
information be supplied before we can convert between them.

What we need, therefore, is a general way to describe how coordinate systems are inter-related,
so that when there is no convention already in place, we can define our own. We can then look
forward to converting, say, from pixels into galactic coordinates and wvice versa. In AST, the
FrameSet class provides this capability.

13.1 The FrameSet Model

Consider a coordinate system (call it number 1) which is represented by a Frame of some kind.
Now consider a Mapping which, when applied to the coordinates in system 1 yields coordinates
in another system, number 2. The Mapping therefore inter-relates coordinate systems 1 and 2.

Now consider a second Mapping which inter-relates system 1 and a further coordinate system,
number 3. If we wanted to convert coordinates between systems 2 and 3, we could do so by:

1. Applying our first Mapping in reverse, so as to convert between systems 2 and 1.

2. Applying the second Mapping, as given, to convert between systems 1 and 3.

We are not limited to three coordinate systems, of course. In fact, we could continue to introduce
any number of further coordinate systems, so long as we have a suitable Mapping for each one
which relates it to one of the Frames already present. Continuing in this way, we can build up
a network in which Frames are inter-related by Mappings in such a way that there is always a
way of converting between any pair of coordinate systems.

The FrameSet (Figure 7) encapsulates these ideas. It is a network composed of Frames and
associated Mappings, in which there is always exactly one path, via Mappings, between any pair
of Frames. Since we assemble FrameSets ourselves, they can be used to represent any coordinate
systems we choose and to set up the particular relationships between them that we want.
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13.2 Creating a FrameSet

Before we can create a FrameSet, we must have a Frame of some kind to put into it, so let’s
create a simple one:

#include "ast.h"
AstFrame *framel;

framel = astFrame( 2, "Domain=A" );

We have set this Frame’s Domain attribute (§7.12) to A so that it will be distinct from the others
we will be using. We can now create a new FrameSet containing just this Frame, as follows:

AstFrameSet *frameset;

frameset = astFrameSet( framel, "" );

So far, however, this Frame isn’t related to any others.

13.3 Adding New Frames to a FrameSet

We can now add further Frames to the FrameSet created above (§13.2). To do so, we must
supply a new Frame and an associated Mapping that relates it to any of the Frames that are
already present (there is only one present so far). To keep the example simple, we will just use
a ZoomMap that multiplies coordinates by 10. The required Objects are created as follows:

AstFrame *frame2;
AstMapping *mappingl?2;

frame2 = astFrame( 2, "Domain=B" );
mappingl2 = astZoomMap( 2, 10.0, "" );

To add the new Frame into our FrameSet, we use the astAddFrame function:
astAddFrame( frameset, 1, mappingl2, frame2 );

Whenever a Frame is added to a FrameSet, it is assigned an integer index. This index starts
with 1 for the initial Frame used to create the FrameSet (§13.2) and increments by one every
time a new Frame is added. This index is the primary way of identifying the Frames within a
FrameSet.
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Figure 11: An example FrameSet, in which Frames 2 and 3 are related to Frame 1 by multiplying
its coordinates by factors of 10 and 5 respectively. The FrameSet’s Base attribute has the value
1 and its Current attribute has the value 3. The transformation performed when the FrameSet
is used as a Mapping (i.e. from its base to its current Frame) is shown in bold.

When a Frame is added, we also have to specify which of the existing ones the new Frame is
related to. Here, we chose number 1, the only one present so far, and the new one we added
became number 2.

Note that a FrameSet does not make copies of the Frames and Mappings that you insert into it.
Instead, it holds pointers to them. This means that if you retain the original pointers to these
Objects and alter them, you will indirectly be altering the FrameSet’s contents. You can, of
course, always use astCopy (§4.13) to make a separate copy of any Object if you need to ensure
its independence.

We could also add a third Frame into our FrameSet, this time defining a coordinate system
which is reached by multiplying the original coordinates (of “framel”) by 5:

astAddFrame( frameset, 1, astZoomMap( 2, 5.0, "" ), astFrame( 2, "Domain=C" ) );

Here, we have avoided storing unnecessary pointer values by using function invocations directly
as arguments for astAddFrame. This assumes that we are using astBegin and astEnd (§4.10) to
ensure that Objects are correctly deleted when no longer required.

Our example FrameSet now contains three Frames and two Mappings with the arrangement
shown in Figure 11. The total number of Frames is given by its read-only Nframe attribute.

13.4 The Base and Current Frames

At all times, one of the Frames in a FrameSet is designated to be its base Frame and one to be
its current Frame (Figure 11). These Frames are identified by two integer FrameSet attributes,
Base and Current, which hold the indices of the nominated Frames within the FrameSet.
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The existence of the base and current Frames reflects an important application of FrameSets,
which is to attach coordinate systems to entities such as data arrays, data files, plotting surfaces
(for graphics), etc. In this context, the base Frame represents the “native” coordinate system of
the attached entity—for example, the pixel coordinates of an image or the intrinsic coordinates
of a plotting surface. The other Frames within the FrameSet represent alternative coordinate
systems which may also be used to refer to positions within that entity. The current Frame
represents the particular coordinate system which is currently selected for use. For instance, if
an image were being displayed, you would aim to label it with coordinates corresponding to the
current Frame. In order to see a different coordinate system, a software user would arrange for
a different Frame to be made current.

The choice of base and current Frames may be changed at any time, simply by assigning new
values to the FrameSet’s Base and Current attributes. For example, to make the Frame with
index 3 become the current Frame, you could use:

astSetI( frameset, "Current", 3 );

You can nominate the same Frame to be both the base and current Frame if you wish.

By default (i.e. if the Base or Current attribute is un-set), the first Frame added to a FrameSet
becomes its base Frame and the last one added becomes its current Frame.? Whenever a new
Frame is added to a FrameSet, the Current attribute is modified so that the new Frame becomes
the current one. This behaviour is reflected in the state of the example FrameSet in Figure 11.

13.5 Referring to the Base and Current Frames

It is often necessary to refer to the base and current Frames (§13.4) within a FrameSet, but it
can be cumbersome having to obtain their indices from the Base and Current attributes on each
occasion. To make this easier, two macros, AST__BASE and AST__CURRENT, are defined in
the “ast.h” header file and may be used to represent the indices of the base and current Frames
respectively. They may be used whenever a Frame index is required.

For example, when adding a new Frame to a FrameSet (§13.3), you could use the following to
indicate that the new Frame is related to the existing current Frame, whatever its index happens
to be:

AstFrame *frame;
AstMapping *mapping;

astAddFrame( frameset, AST__CURRENT, mapping, frame );

Of course, the Frame you added would then become the new current Frame.

20 Although this is reversed if the FrameSet’s Invert attribute is non-zero.
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13.6 Using a FrameSet as a Mapping

The FrameSet class inherits properties and behaviour from the Frame class (§7) and, in turn,
from the Mapping class (§5). Its behaviour when used as a Mapping is particularly important.

Consider, for instance, passing a FrameSet pointer to a coordinate transformation function such
as astTran2:

#define N 10
double xin[ N ], yin[ N ], xout[ N ], yout[ N ];

astTran2( frameset, N, xin, yin, 1, xout, yout );

The coordinate transformation applied by this FrameSet would be the one which converts be-
tween its base and current Frames. Using the FrameSet in Figure 11, for example, the coordinates
would be multiplied by a factor of 5. If we instead requested the FrameSet’s inverse transfor-
mation, we would be transforming from its current Frame to its base Frame, so our example
FrameSet would then multiply by a factor of 0.2.

Whenever the choice of base and current Frames changes, the transformations which a FrameSet
performs when used as a Mapping also change to reflect this. The Nin and Nout attributes
may also change in consequence, because they are determined by the numbers of axes in the
FrameSet’s base and current Frames respectively. These numbers need not necessarily be equal,
of course.

Like any Mapping, a FrameSet may also be inverted by changing the boolean sense of its Invert
attribute, e.g. using astInvert (§5.5). If this is happens, the values of the FrameSet’s Base and
Current attributes are interchanged, along with its Nin and Nout attributes, so that its base
and current Frames swap places. When used as a Mapping, the FrameSet will therefore perform
the inverse transformation to that which it performed previously.

To summarise, a FrameSet may be used exactly like any other Mapping which inter-relates the
coordinate systems described by its base and current Frames.

13.7 Extracting a Mapping from a FrameSet

Although it is very convenient to use a FrameSet when a Mapping is required (§13.6), a Frame-
Set necessarily contains additional information and sometimes this might cause inefficiency or
confusion. For example, if you wanted to use a Mapping contained in one FrameSet and insert
it into another, it would probably not be efficient to insert the whole of the first FrameSet into
the second one, although it would work.

In such a situation, the astGetMapping function allows you to extract a Mapping from a Frame-
Set. You do this by specifying the two Frames which the Mapping should inter-relate using their
indices within the FrameSet. For example:

map = astGetMapping( frameset, 2, 3 );
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would return a pointer to a Mapping that converted between Frames 2 and 3 in the FrameSet.
Its inverse transformation would then convert in the opposite direction, i.e. between Frames 3
and 2. Note that this Mapping might not be independent of the Mappings contained within the
FrameSet—i.e. they may share sub-Objects—so astCopy should be used to make a copy if you
need to guarantee independence (§4.13).

Very often, the Mapping returned by astGetMapping will be a compound Mapping, or CmpMap
(86). This reflects the fact that conversion between the two Frames may need to be done via an
intermediate coordinate system so that several stages may be involved. You can, however, easily
simplify this Mapping (where this is possible) by using the astSimplify function (§6.7) and this
is recommended if you plan to use it for transforming a large amount of data.

13.8 Using a FrameSet as a Frame

A FrameSet can also be used as a Frame, in which capacity it almost always behaves as if
its current Frame had been used instead. For example, if you request the Title attribute of a
FrameSet using:

const char *title;

title = astGetC( frameset, "Title" );

the result will be the Title of the current Frame, or a suitable default if the current Frame’s Title
attribute is un-set. The same also applies to other attribute operations—i.e. setting, clearing
and testing attributes. Most attributes shared by both Frames and FrameSets behave in this
way, such as Naxes, Label(axis), Format(axis), etc. There are, however, a few exceptions:

Class

Has the value “FrameSet”.
ID

Identifies the particular FrameSet (not its current Frame).
Nin

Equals the number of axes in the FrameSet’s base Frame.
Invert

Is independent of any of the Objects within the FrameSet.
Nobject

Counts the number of active FrameSets.
RefCount

Counts the number of active pointers to the FrameSet (not to its current Frame).

Note that the set of attributes possessed by a FrameSet can vary, depending on the nature of its
current Frame. For example, if the current Frame is a SkyFrame (§8), then the FrameSet will
acquire an Equinox attribute from it which can be set, enquired, etc. However, if the current
Frame is changed to be a basic Frame, which does not have an Equinox attribute, then this
attribute will be absent from the FrameSet as well. Any attempt to reference it will then result
in an error.
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13.9 Extracting a Frame from a FrameSet

Although a FrameSet may be used in place of its current Frame in most situations, it is sometimes
convenient to have direct access to a specified Frame within it. This may be obtained using the
astGetFrame function, as follows:

frame = astGetFrame( frameset, AST__BASE );

This would return a pointer (not a copy) to the base Frame within the FrameSet. Note the use
of AST__BASE (§13.5) as shorthand for the value of the FrameSet’s Base attribute, which gives
the base Frame’s index.

13.10 Removing a Frame from a FrameSet

Removing a Frame from a FrameSet is straightforward and is performed using the astRemove-
Frame function. You identify the Frame you wish to remove in the usual way, by giving its index
within the FrameSet. For example, the following would remove the Frame with index 1:

astRemoveFrame( frameset, 1 );

The only restriction is that you cannot remove the last remaining Frame because a FrameSet
must always contain at least one Frame. When a Frame is removed, the Frames which follow
it are re-numbered (i.e. their indices are reduced by one) so as to preserve the sequence of
consecutive Frame indices. The FrameSet’s Nframe attribute is also decremented.

If appropriate, astRemoveFrame will modify the FrameSet’s Base and/or Current attributes so
that they continue to identify the same Frames as previously. If either the base or current Frame
is removed, however, the corresponding attribute will become un-set, so that it reverts to its
default value (§13.4) and therefore identifies an alternative Frame.

Note that it is quite permissible to remove any Frame from a FrameSet, even although other
Frames may appear to depend on it. For example, in Figure 11, if Frame 1 were removed, the
correct relationship between Frames 2 and 3 would still be preserved, although they would be
re-numbered as Frames 1 and 2.
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14 Higher Level Operations on FrameSets

14.1 Creating FrameSets with astConvert

Before considering the important subject of using FrameSets to convert between coordinate
systems (§14.2), let us return briefly to reconsider the output generated by astConvert. We
used this function earlier (§12), when converting between the coordinate systems represented
by various kinds of Frame, and indicated that it returns a FrameSet to represent the coordinate
conversion it identifies. We are now in a position to examine the structure of this FrameSet.

Take our earlier example (§12.1) of converting between the celestial coordinate systems repre-
sented by two SkyFrames:

#include "ast.h"
AstFrameSet *cvt;
AstSkyFrame *skyframel, *skyframe2;

skyframel = astSkyFrame( "System=FK4-NO-E, Epoch=B1958, Equinox=B1960" );
skyframe2 = astSkyFrame( "System=Ecliptic, Equinox=J2010.5" );
cvt = astConvert( skyframel, skyframe2, "" );

This will produce a pointer, “cvt”, to the FrameSet shown in Figure 12.  As can be seen,

SkyFrame
Mapping 2

i) U

Base Frame Current Frame

4 FrameSet

Figure 12: The FrameSet produced when astConvert is used to convert between the coordinate
systems represented by two SkyFrames. The source SkyFrame becomes the base Frame, while
the destination SkyFrame becomes the current Frame. The Mapping between them implements
the required conversion.

this FrameSet contains just two Frames. The source Frame supplied to astConvert becomes its
base Frame, while the destination Frame becomes its current Frame. (The FrameSet, of course,
simply holds pointers to these Frames, rather than making copies.) The Mapping which relates
the base Frame to the current Frame is the one which implements the required conversion.

As we noted earlier (§12.1), the FrameSet returned by astConvert may be used both as a Mapping
and as a Frame to perform most of the functions you are likely to need. However, the Mapping
may be extracted for use on its own if necessary, using astGetMapping (§13.7), for example:
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AstMapping *mapping;

mapping = astGetMapping( cvt, AST__BASE, AST__CURRENT );

14.2 Converting between FrameSet Coordinate Systems

We now consider the process of converting between the coordinate systems represented by two
FrameSets. This is a most important operation, as a subsequent example (§14.3) will show, and
is illustrated in Figure 13. Recalling (§13.8) that a FrameSet will behave like its current Frame
when necessary, conversion between two FrameSets is performed using astConvert (§12.1), but
supplying pointers to FrameSets instead of Frames. The effect of this is to convert between the
coordinate systems represented by the current Frames of each FrameSet:

AstFrameSet *frameseta, *framesetb;

cvt = astConvert( frameseta, framesetb, "SKY" );

When using FrameSets, we are presented with considerably more conversion options than when
using Frames alone. This is because each current Frame is related to all the other Frames in
its respective FrameSet. Therefore, if we can establish a link between any pair of Frames, one
from each FrameSet, we can form a complete conversion path between the two current Frames
(Figure 13).

This expanded range of options is, of course, precisely the intention. By connecting Frames
together within a FrameSet, we have extended the range of coordinate systems that can be
reached from any one of them. We are therefore no longer restricted to converting between
Frames with the same Domain value (§7.12), but can go via a range of intermediate coordinate
systems in order to make the connection we require. Transformation between different domains
has therefore become possible because, in assembling the FrameSets, we provided the additional
information needed to inter-relate them.

It is important to appreciate, however, that the choice of “missing link” is crucial in determining
the conversion that results. Although each FrameSet may be perfectly self-consistent internally,
this does not mean that all conversion paths through the combined network of Mappings are
equivalent. Quite the contrary in fact: everything depends on where the inter-connecting link
between the two FrameSets is made. In practice, there may be a large number of possible
pairings of Frames and hence of possible links. Other factors must therefore be used to restrict
the choice. These are:

1. Not every possible pairing of Frames is legitimate. For example, you cannot convert
directly between a basic Frame and a SkyFrame which belong to different classes, so such
pairings will be ignored.

2. In a similar way, you cannot convert directly between Frames with different Domain values
(§7.12). If the Domain attribute is used consistently (typically only one Frame in each
FrameSet will have a particular Domain value), then this further restricts the choice.
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Figure 13: Conversion between two FrameSets is performed by establishing a link between a
pair of Frames, one from each FrameSet. If conversion between these two Frames is possible,
then a route for converting between the current Frames of both FrameSets can also be found. In
practice, there may be many ways of pairing Frames to find the “missing link”, so the Frames’
Domain attribute may be used to narrow the choice.
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3. The third argument of astConvert may then be used to specify explicitly which Domain
value the paired Frames should have. You may also supply a comma-separated list of
preferences here (see below).

4. If the above steps fail to uniquely identify the link, then the first suitable pairing of Frames
is used, so that any ambiguity is resolved by the order in which Frames are considered for
pairing (see the description of the astConvert function in Appendix B for details of the
search order).?!

In the example above we supplied the string “SKY” as the third argument of astConvert. This
constitutes a request that a pair of Frames with the Domain value SKY (i.e. representing celestial
coordinate systems) should be used to inter-relate the two FrameSets. Note that this does not
specify which celestial coordinate system to use, but is a general request that the two FrameSets
be inter-related using coordinates on the celestial sphere.

Of course, it may be that this request cannot be met because there may not be a celestial coor-
dinate system in both FrameSets. If this is likely to happen, we can supply a list of preferences,
or a domain search path, as the third argument to astConvert, such as the following:

cvt = astConvert( frameseta, framesetb, "SKY,PIXEL,GRID," );

Now, if the two FrameSets cannot be inter-related using the SKY domain, astConvert will
attempt to use the PIXEL domain instead. If this also fails, it will try the GRID domain. A
blank field in the domain search path (here indicated by the final comma) allows any Domain
value to be used. This can be employed as a last resort when all else has failed.

If astConvert succeeds in identifying a conversion, it will return a pointer to a FrameSet (§14.1)
in which the source and destination Frames are inter-connected by the required Mapping. In
this case, of course, these Frames will be the current Frames of the two FrameSets, but in all
other respects the returned FrameSet is the same as when converting between Frames.

Very importantly, however, astConvert may modify the FrameSets you are converting between.
It does this, in order to indicate which pairing of Frames was used to inter-relate them, by
changing the Base attribute for each FrameSet so that the Frame used in the pairing becomes
its base Frame (§13.4).

Finally, note that astConvert may also be used to convert between a FrameSet and a Frame, or
vice versa. If a pointer to a Frame is supplied for either the first or second argument, it will
behave like a FrameSet containing only a single Frame.

14.3 Example—Registering Two Images

Consider two images which have been calibrated by attaching FrameSets to them, such that the
base Frame of each FrameSet corresponds to the raw data grid coordinates of each image (the
GRID domain of §7.13). Suppose, also, that these FrameSets contain an unknown number of
other Frames, representing alternative world coordinate systems. What we wish to do is register

2Mf you find that how this ambiguity is resolved actually makes a difference to the conversion that results, then
you have probably constructed a FrameSet which lacks internal self-consistency. For example, you might have
two Frames representing indistinguishable coordinate systems but inter-related by a non-null Mapping.
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these two images, such that we can transform from a position in the data grid of one into the
corresponding position in the data grid of the other. This is a very practical example because
images will typically be calibrated using FrameSets in precisely this way.

The first step will probably involve making a copy of both FrameSets (using astCopy—§4.13),
since we will be modifying them. Let “frameseta” and “framesetb” be pointers to these copies.
Since we want to convert between the base Frames of these FrameSets (i.e. their data grid
coordinates), the next step is to make these Frames current. This is simply done by inverting
both FrameSets, which interchanges their base and current Frames. astInvert will perform this
task:

astInvert( frameseta );
astInvert( framesetb );

To identify the required conversion, we now use astConvert, supplying a suitable domain search
path with which we would like our two images to be registered:

cvt = astConvert( frameseta, framesetb, "SKY,PIXEL,GRID" );
if ( cvt == AST__NULL ) {

<no conversion was possible>
} else {

<conversion was possible>

}
The effects of this are:

1. astConvert first attempts to register the two images on the celestial sphere (i.e. using
the SKY domain). To do this, it searches for a celestial coordinate system, although not
necessarily the same one, attached to each image. If it finds a suitable pair of coordinate
systems, it then registers the images by matching corresponding positions on the sky.

2. If this fails, astConvert next tries to match positions in the PIXEL domain (§7.12). If it
succeeds, the two images will then be registered so that their corresponding pixel positions
correspond. If the PIXEL domain is offset from the data grid (as typically happens in data
reduction systems which implement a “pixel origin”), then this will be correctly accounted
for.

3. If this also fails, the GRID domain is finally used. This will result in image registration by
matching corresponding points in the data grids used by both images. This means they
will be aligned so that the first element their data arrays correspond.

4. If all of the above fail, astConvert will return the value AST__NULL. Otherwise a pointer
to a FrameSet will be returned.

The resulting “cvt” FrameSet may then be used directly (§12.1) to convert between positions
in the data grid of the first image and corresponding positions in the data grid of the second
image.

To determine which domain was used to achieve registration, we can use the fact that the Base
attribute of each FrameSet is set by astConvert to indicate which intermediate Frames were
used. We can therefore simply invert either FrameSet (to make its base Frame become the
current one) and then enquire the Domain value:
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const char *domain;

astInvert( frameseta );
domain = astGetC( frameseta, "Domain" );

If conversion was successful, the result will be one of the strings “SKY”, “PIXEL” or “GRID”.

14.4 Re-Defining a FrameSet Coordinate System

As discussed earlier (§13.4), an important application of a FrameSet is to allow coordinate
system information to be attached to entities such as images in order to calibrate them. In
addition, one of the main objectives of AST is to simplify the propagation of such information
through successive stages of data processing, so that it remains consistent with the associated
image data.

In such a situation, the FrameSet’s base Frame would correspond with the image’s data grid
coordinates and its other Frames (if any) with the various alternative world coordinate sys-
tems associated with the image. If the data processing being performed does not change the
relationship between the image’s data grid coordinates and any of the associated world coordi-
nate systems, then propagation of the WCS information is straightforward and simply involves
copying the FrameSet associated with the image.

If any of these relationships change, however, then corresponding changes must be made to the
way Frames within the FrameSet are inter-related. By far the most common case occurs when
the image undergoes some geometrical transformation resulting in “re-gridding” on to another
data grid, but the same principles can be applied to any re-definition of a coordinate system.

To pursue the re-gridding example, we would need to modify our FrameSet to account for the
fact that the image’s data grid coordinate system (corresponding to the FrameSet’s base Frame)
has changed. Looking at the steps needed in detail, we might proceed as follows:

1. Create a Mapping which represents the relationship between the original data grid coor-
dinate system and the new one.

2. Obtain a Frame to represent the new data grid coordinate system (we could re-use the
original base Frame here, using astGetFrame to obtain a pointer to it).

3. Add the new Frame to the FrameSet, related to the original base Frame by the new
Mapping. This Frame now represents the new data grid coordinate system and is correctly
related to all the other Frames present.??

4. Remove the original base Frame (representing the old data grid coordinate system).
5. Make the new Frame the base Frame and restore the original current Frame.
The effect of these steps is to change the relationship between the base Frame and all the other

Frames present. It is as if a new Mapping has been interposed between the Frame we want to
alter and all the other Frames within the FrameSet (Figure 14).

22This is because any transformation to or from this new Frame must go via the base Frame representing the
original data grid coordinate system, which we assume was correctly related to all the other Frames present.
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Figure 14: The effect of astRemapFrame is to interpose a Mapping between a nominated Frame
within a FrameSet and the remaining contents of the FrameSet. This effectively “re-defines” the
coordinate system represented by the affected Frame. It may be used to compensate (say) for
geometrical changes made to an associated image. The inter-relationships between all the other
Frames within the FrameSet remain unchanged.

Performing the steps above is rather lengthy, however, so the astRemapFrame function is pro-
vided to perform all of these operations in one go. A practical example of its use is given below
(8§14.5).

14.5 Example—Binning an Image

As an example of using astRemapFrame, consider a case where the pixels of a 2-dimensional
image have been binned 2x2, so as to reduce the image size by a factor of two in each dimension.
We must now modify the associated FrameSet to reflect this change to the image. Much the
same process would be needed for any other geometrical change the image might undergo.

We first set up a Mapping (a WinMap in this case) which relates the data grid coordinates in
the original image to those in the new one:

AstWinMap *winmap;

double inal[ 2 ] = { 0.5, 0.5 };
double inb[ 2 1 = { 2.5, 2.5 };
double outal[ 2 ] = { 0.5, 0.5 };
double outb[ 2 ] = { 1.5, 1.5 };
winmap = astWinMap( 2, ina, inb, outa, outb, "" );

Here, we have simply set up arrays containing the data grid coordinates of the bottom left
and top right corners of the first element in the output image (“outa” and “outb”) and the
corresponding coordinates in the input image (“ina” and “inb”). astWinMap then creates a
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WinMap which performs the required transformation. We do not need to know the size of the
image.

We can then pass this WinMap to astRemapFrame. This modifies the relationship between our
FrameSet’s base Frame and the other Frames in the FrameSet, so that the base Frame represents
the data grid coordinate system of the new image rather than the old one:

AstFrameSet *frameset;

astRemapFrame( frameset, AST__BASE, winmap );

Any other coordinate systems described by the FrameSet, no matter how many of these there
might be, are now correctly associated with the new image.

14.6 Maintaining the Integrity of FrameSets

When constructing a FrameSet, you are provided with a framework into which you can place
any combination of Frames and Mappings that you wish. There are relatively few constraints
on this process and no checks are performed to see whether the FrameSet you construct makes
physical sense. It is quite possible, for example, to construct a FrameSet containing two identical
SkyFrames which are inter-related by a non-unit Mapping. AST will not object if you do this,
but it makes no sense, because applying a non-unit Mapping to any set of celestial coordinates
cannot yield positions that are still in the original coordinate system. If you use such a Frame-
Set to perform coordinate conversions, you are likely to get unpredictable results because the
information in the FrameSet is corrupt.

It is, of course, your responsibility as a programmer to ensure the validity of any information
which you insert into a FrameSet. Normally, this is straightforward and simply consists of
formulating your problem correctly (a diagram can often help to clarify how coordinate systems
are inter-related) and writing the appropriate bug-free code to construct the FrameSet. However,
once you start to modify an existing FrameSet, there are new opportunities for corrupting it!

Consider, for example, a FrameSet whose current Frame is a SkyFrame. We can set a new value
for this SkyFrame’s Equinox attribute simply by using astSet on the FrameSet, as follows:

astSet( frameset, "Equinox=J2010" );

The effect of this will be to change the celestial coordinate system which the current Frame
represents. You can see, however, that this has the potential to make the FrameSet corrupt
unless corresponding changes are also made to the Mapping which relates this SkyFrame to the
other Frames within the FrameSet. In fact, it is a general rule that any change to a FrameSet
which affects its current Frame can potentially require corresponding changes to the FrameSet’s
Mappings in order to maintain its overall integrity.

Fortunately, once you have stored valid information in a FrameSet, AST will look after these
details for you automatically, so that the FrameSet’s integrity is maintained. In the example
above, it would do this by appropriately re-mapping the current Frame (as if astRemapFrame
had been used—§14.4) in response to the use of astSet. One way of illustrating this process is
as follows:
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AstSkyFrame *skyframe;

skyframe = astSkyFrame( "" );
frameSet = astFrameSet( skyframe );
astAddFrame( frameset, 1, astUnitMap( 2, "" ), skyframe );

This constructs a trivial FrameSet whose base and current Frames are both the same SkyFrame
connected by a UnitMap. You can think of this as a “pipe” connecting two coordinate systems.
At present, these two systems represent identical ICRS coordinates, so the FrameSet implements
a unit Mapping. We can change the coordinate system on the current end of this pipe as follows:

astSet( frameset, "System=Ecliptic, Equinox=J2010" );

and the Mapping which the FrameSet implements would change accordingly. To change the
coordinate system on the base end of the pipe, we might use:

astInvert( frameset );
astSet( frameset, "System=Galactic" );
astInvert( frameset );

The FrameSet would then convert between galactic and ecliptic coordinates.

Note that astSet is not the only function which has this effect: astClear behaves similarly, as
also does astPermAxes (§7.9). If you need to circumvent this mechanism for any reason, this
can be done by going behind the scenes and obtaining a pointer directly to the Frame you wish
to modify. Consider the following, for example:

skyframe = astGetFrame( frameset, AST__CURRENT ) ;
astSet ( skyframe, "Equinox=J2010" );
skyframe = astAnnul( skyframe );

Here, astSet is applied to the SkyFrame pointer rather than the FrameSet pointer, so the usual
checks on FrameSet integrity do not occur. The SkyFrame’s Equinox attribute will therefore be
modified without any corresponding change to the FrameSet’s Mappings. In this case you must
take responsibility yourself for maintaining the FrameSet’s integrity, perhaps through appropri-
ate use of astRemapFrame.

14.7 Merging FrameSets

As well as adding individual Frames to a FrameSet (§13.3), it is also possible to add complete
sets of inter-related Frames which are contained within another FrameSet. This, of course,
corresponds to the process of merging two FrameSets (Figure 15).

This process is performed by adding one FrameSet to another using astAddFrame, in much
the same manner as when adding a new Frame to an existing FrameSet (§13.3). It is simply
a matter of providing a FrameSet pointer, instead of a Frame pointer, for the 4th argument.
In performing the merger you must, as usual, supply a Mapping, but in this case the Mapping
should relate the current Frame of the FrameSet being added to one of the Frames already
present. For example, you might perform the merger shown in Figure 15 as follows:
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Figure 15: Two FrameSets in the process of being merged using astAddFrame. FrameSet B
is being added to FrameSet A by supplying a new Mapping which inter-relates a nominated
Frame in A (here number 1) and the current Frame of B. In the merged FrameSet, the Frames
contributed by B will be re-numbered to become Frames 4, 5 and 6. The base Frame will remain
unchanged, but the current Frame of B becomes the new current Frame. Note that FrameSet B
itself is not altered by this process.
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AstMapping *mapping;

astAddFrame( frameseta, 1, mapping, framesetb );

The Frames acquired by “frameseta” from the FrameSet being added (“framesetb”) are re-
numbered so that they retain their original order and follow on consecutively after the Frames
that were already present, whose indices remain unchanged. The base Frame of “frameseta”
remains unchanged, but the current Frame of “framesetb” becomes its new current Frame. All
the inter-relationships between Frames in both FrameSets remain in place and are preserved in
the merged FrameSet.

Note that while this process modifies the first FrameSet (“frameseta”), it leaves the original
contents of the one being added (“framesetb”) unchanged.
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15 Saving and Restoring Objects (Channels)

Facilities are provided by the AST library for performing input and output (I/O) with any kind
of Object. This means it is possible to write any Object into various external representations
for storage, and then to read these representations back in, so as to restore the original Object.
Typically, an Object would be written by one program and read back in by another.

We refer to “external representations” in the plural because AST is designed to function inde-
pendently of any particular data storage system. This means that Objects may need converting
into a number of different external representations in order to be compatible with (say) the
astronomical data storage system in which they will reside.

In this section, we discuss the basic 1/O facilities which support external representations based
on a textual format referred to as the AST “native format”. These are implemented using a
new kind of Object—a Channel. We will examine later how to use other representations, based
on an XML format or on the use of FITS headers, for storing Objects. These are implemented
using more specialised forms of Channel called XmlChan (§18) and FitsChan (§16).

15.1 The Channel Model

The best way to start thinking about a Channel is like a C file stream, and to think of the process
of creating a Channel as that of opening a file and obtaining a FILE pointer. Subsequently, you
can read and write Objects via the Channel.

This analogy is not quite perfect, however, because a Channel has, in principle, two “files”
attached to it. One is used when reading, and the other when writing. These are termed the
Channel’s source and sink respectively. In practice, the source and sink may both be the same,
in which case the analogy with the C file stream is correct, but this need not always be so. It is
not necessarily so with the basic Channel, as we will now see (§15.2).

15.2 Creating a Channel

The process of creating a Channel is straightforward. As you might expect, it uses the construc-
tor function astChannel:

#include "ast.h"
AstChannel *channel;

channel = astChannel( NULL, NULL, "" );

The first two arguments to astChannel specify the external source and sink that the Channel
is to use. There arguments are pointers to C functions and we will examine their use in more

detail later (§15.13 and §15.14).

In this very simple example we have supplied NULL pointers for both the source and sink
functions. This requests the default behaviour, which means that textual input will be read from
the program’s standard input stream (typically, this means your keyboard) while textual output
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will go to the standard output stream (typically appearing on your screen). On UNIX systems,
of course, either of these streams can easily be redirected to files. This default behaviour can
be changed by assigning values to the Channel’s SinkFile and/or SourceFile attributes. These
attributes specify the paths to text files that are to be used in place of the standard input and
output streams.

15.3 Writing Objects to a Channel

The process of saving Objects is very straightforward. You can simply write any Object to a
Channel using the astWrite function, as follows:

int nobj;
AstObject *object;

nobj = astWrite( channel, object );

The effect of this will be to produce a textual description of the Object which will appear, by
default, on your program’s standard output stream. Any class of Object may be converted into
text in this way.

astWrite returns a count of the number of Objects written. Usually, this will be one, unless the
Object supplied cannot be represented. With a basic Channel all Objects can be represented,
so a value of one will always be returned unless there has been an error. We will see later,
however, that more specialised forms of Channel may impose restrictions on the kind of Object
you can write (§17.2). In such cases, astWrite may return zero to indicate that the Object was
not acceptable.

15.4 Reading Objects from a Channel

Before discussing the format of the output produced above (§15.3), let us consider how to read
it back, so as to reconstruct the original Object. Naturally, we would first need to save the
output in a file. We can do that either by using the SinkFile attribute, or (on UNIX systems),
by redirecting standard output to a file using a shell command like:

programl >file

Within a subsequent program, we can read this Object back in by using the astRead function,
having first created a suitable Channel:

object = astRead( channel );

By default, this function will read from the standard input stream (the default source for a basic
Channel), so we would need to ensure that our second program reads its input from the file in
which the Object description is stored. On UNIX systems, we could again use a shell redirection
command such as:

program2 <file

Alternatively, we could have assigned a value to the SinkFile attribute before invoking astRead.
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15.5 Saving and Restoring Multiple Objects

I/0 operations performed on a basic Channel are sequential. This means that if you write more
than one Object to a Channel, each new Object’s textual description is simply appended to the
previous one. You can store any number of Objects in this way, subject only to the storage
space you have available.

After you read an Object back from a basic Channel, the Channel is “positioned” at the end of
that Object’s textual description. If you then perform another read, you will read the next Ob-
ject’s textual description and therefore retrieve the next Object. This process may be repeated
to read each Object in turn. When there are no more Objects to be read, astRead will return
the value AST__NULL to indicate an end-of-file.

15.6 Validating Input

The pointer returned by astRead (§15.4) could identify any class of Object—this is determined
entirely by the external data being read. If it is necessary to test for a particular class (say a
Frame), this may be done as follows using the appropriate member of the astIsA<Class> family
of functions:

int ok;

ok = astIsAFrame( object );

Note, however, that this will accept any Frame, so would be equally happy with a basic Frame
or a SkyFrame. An alternative validation strategy would be to obtain the value of the Object’s
Class attribute and then test this character string, as follows:

#include <string.h>

ok = !strcmp( astGetC( object, "Class" ), "Frame" );

This would only accept a basic Frame and would reject a SkyFrame.

15.7 Storing an ID String with an Object

Occasionally, you may want to store a number of Objects and later retrieve them and use each
for a different purpose. If the Objects are of the same class, you cannot use the Class attribute
to distinguish them when you read them back (c.f. §15.6). Although relying on the order in
which they are stored is a possible solution, this becomes complicated if some of the Objects
are optional and may not always be present. It also makes extending your data format in future
more difficult.

To help with this, every AST Object has an ID attribute and an Ident attribute, both of which
allows you, in effect, to attach a textual identification label to it. You simply set the ID or Ident
attribute before writing the Object:
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astSet( object, "ID=Calibration" );
nobj = astWrite( channel, object );

You can then test its value after you read the Object back:

object = astRead( channel );

if ( !strcmp( astGetC( object, "ID" ), "Calibration" ) ) {
<the Calibration Object has been read>

} else {
<some other Object has been read>

}

The only difference between the ID and Ident attributes is that the ID attribute is unique to a
particular Object and is lost if, for example, you make a copy of the Object. The Ident attrubute,
on the other hand, is transferred to the new Object when a copy is made. Consequently, it is
safest to set the value of the ID attribute immediately before you perform the write.

15.8 The Textual Output Format
Let us now examine the format of the textual output produced by writing an Object to a basic
Channel (§15.3). To give a concrete example, suppose the Object in question is a SkyFrame,

written out as follows:

AstSkyFrame *skyframe;

nobj = astWrite( channel, skyframe );

The output should then look like the following;:

Begin SkyFrame # Description of celestial coordinate system
# Title = "FK4 Equatorial Coordinates, no E-terms, Mean Equinox B1950.0, Epoch B1958.0" # Title
Naxes = 2 # Number of coordinate axes

#  Domain = "SKY" # Coordinate system domain

# Lbll = "Right Ascension" # Label for axis 1

# Lbl2 = "Declination" # Label for axis 2

# Unil = "hh:mm:ss.s" # Units for axis 1

# Uni2 = "ddd:mm:ss" # Units for axis 2

# Dirl = 0 # Plot axis 1 in reverse direction (hint)
Ax1 = # Axis number 1

Begin SkyAxis # Celestial coordinate axis
End SkyAxis

Ax2 = # Axis number 2
Begin SkyAxis # Celestial coordinate axis
End SkyAxis

IsA Frame # Coordinate system description
System = "FK4-NO-E" # Celestial coordinate system type
Epoch = 1958 # Besselian epoch of observation
#  Eqnox = 1950 # Besselian epoch of mean equinox
End SkyFrame
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You will notice that this output is designed both for a human reader, in that it is formatted,
and also to be read back by a computer in order to reconstruct the SkyFrame. In fact, this
is precisely the way that astShow works (§4.4), this function being roughly equivalent to the
following use of a Channel:

channel = astChannel( NULL, NULL, "" );
(void) astWrite( channel, object );
channel = astAnnul( channel );

Some lines of the output start with a “#” comment character, which turns the rest of the line
into a comment. These lines will be ignored when read back in by astRead. They typically
contain default values, or values that can be derived in some way from the other data present,
so that they do not actually need to be stored in order to reconstruct the original Object. They
are provided purely for human information. The same comment character is also used to append
explanatory comments to most output lines.

It is not sensible to attempt a complete description of this output format because every class
of Object is potentially different and each can define how its own data should be represented.
However, there are some basic rules, which mean that the following common features will usually
be present:

1. Each Object is delimited by matching “Begin” and “End” lines, which also identify the
class of Object involved.

2. Within each Object description, data values are represented by a simple “keyword = value”
syntax, with one value to a line.

3. Lines beginning “IsA” are used to mark the divisions between data belonging to different
levels in the class hierarchy (Appendix A). Thus, “IsA Frame” marks the end of data
associated with the Frame class and the start of data associated with some derived class
(a SkyFrame in the above example). “IsA” lines may be omitted if associated data values
are absent and no confusion arises.

4. Objects may contain other Objects as data. This is indicated by an absent value, with the
description of the data Object following on subsequent lines.

5. Indentation is used to clarify the overall structure.

Beyond these general principles, the best guide to what a particular line of output represents
will generally be the comment which accompanies it together with a general knowledge of the
class of Object being described.

15.9 Controlling the Amount of Output

It is not always necessary for the output from astWrite (§15.3) to be human-readable, so a
Channel has attributes that allow the amount of detail in the output to be controlled.

The first of these is the integer attribute Full, which controls the extent to which optional,
commented out, output lines are produced. By default, Full is zero, and this results in the
standard style of output (§15.8) where default values that may be helpful to humans are included.
To suppress these optional lines, Full should be set to —1. This is most conveniently done when
the Channel is created, so that:
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channel = astChannel( NULL, NULL, "Full=-1" );
(void) astWrite( channel, skyframe );
channel = astAnnul( channel );

would result in output containing only the essential information, such as:

Begin SkyFrame # Description of celestial coordinate system
Naxes = 2 # Number of coordinate axes
Ax1 = # Axis number 1
Begin SkyAxis # Celestial coordinate axis
End SkyAxis
Ax2 = # Axis number 2
Begin SkyAxis # Celestial coordinate axis
End SkyAxis
IsA Frame # Coordinate system description
System = "FK4-NO-E" # Celestial coordinate system type
Epoch = 1958 # Besselian epoch of observation
End SkyFrame

In contrast, setting Full to +1 will result in additional output lines which will reveal every last
detail of the Object’s construction. Often this will be rather more than you want, especially
for more complex Objects, but it can sometimes help when debugging programs. This is how a
SkyFrame appears at this level of detail:

Begin SkyFrame # Description of celestial coordinate system
# RefCnt =1 # Count of active Object pointers
# Nobj =1 # Count of active Objects in same class
IsA Object # Astrometry Object

Nin = 2 # Number of input coordinates

Nout = 2 # Number of output coordinates

Invert = 0 # Mapping not inverted

Fwd = 1 # Forward transformation defined

Inv = 1 # Inverse transformation defined

Report = O # Don’t report coordinate transformations
IsA Mapping # Mapping between coordinate systems

H O H O HH

# Title = "FK4 Equatorial Coordinates, no E-terms, Mean Equinox B1950.0, Epoch B1958.0" # Title
Naxes = 2 # Number of coordinate axes

# Domain = "SKY" # Coordinate system domain

# Lbll = "Right Ascension" # Label for axis 1

# Lbl2 = "Declination" # Label for axis 2

# Syml = "RA" # Symbol for axis 1

# Sym2 = "Dec" # Symbol for axis 2

# Unil = "hh:mm:ss.s" # Units for axis 1

# Uni2 = "ddd:mm:ss" # Units for axis 2

# Digl = 7 # Individual precision for axis 1

# Dig2 = 7 # Individual precision for axis 2

# Digits = 7 # Default formatting precision

# Fmtl = "hms.1" # Format specifier for axis 1

# Fmt2 = "dms" # Format specifier for axis 2

# Dirl = 0 # Plot axis 1 in reverse direction (hint)

# Dir2 =1 # Plot axis 2 in conventional direction (hint)

# Presrv = 0 # Don’t preserve target axes



15.10 Controlling Commenting

H OH H O H H

H O H O H H +*

H H H

H# #

H O H O HH

H H H

Permut = 1 # Axes may be permuted to match
MinAx = 2 # Minimum number of axes to match
MaxAx = 2 # Maximum number of axes to match
MchEnd = 0 # Match initial target axes
Prml = 1 # Axis 1 not permuted
Prm2 = 2 # Axis 2 not permuted
Ax1 = # Axis number 1
Begin SkyAxis # Celestial coordinate axis
RefCnt = 1 # Count of active Object pointers
Nobj = 2 # Count of active Objects in same class
IsA Object # Astrometry Object
Label = "Angle on Sky" # Axis Label
Symbol = "delta" # Axis symbol
Unit = "ddd:mm:ss" # Axis units
Digits = 7 # Default formatting precision

Format = "dms" # Format specifier

Dirn = 1 # Plot in conventional direction
IsA Axis # Coordinate axis

Format = "dms" # Format specifier

IsLlat = 0 # Longitude axis (not latitude)

AsTime = 0 # Display values as angles (not times)
End SkyAxis

Ax2 = # Axis number 2

Begin SkyAxis # Celestial coordinate axis

RefCnt = 1 # Count of active Object pointers

Nobj = 2 # Count of active Objects in same class
IsA Object # Astrometry Object

Label = "Angle on Sky" # Axis Label

Symbol = "delta" # Axis symbol

Unit = "ddd:mm:ss" # Axis units

Digits = 7 # Default formatting precision

Format = "dms" # Format specifier

Dirn = 1 # Plot in conventional direction
IsA Axis # Coordinate axis

Format "dms" # Format specifier

IsLlat = 0 # Longitude axis (not latitude)

AsTime = 0 # Display values as angles (not times)
End SkyAxis

IsA Frame # Coordinate system description

#

System = "FK4-NO-E" # Celestial coordinate system type
Epoch = 1958 # Besselian epoch of observation
Egnox = 1950 # Besselian epoch of mean equinox

End SkyFrame
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Another way of controlling output from a Channel is via the boolean (integer) Comment at-
tribute, which controls whether comments are appended to describe the purpose of each value.
Comment has the value 1 by default but, if set to zero, will suppress these comments. This is

normally appropriate only if you wish to minimise the amount of output, for example:

astSet( channel, "Full=-1, Comment=0" );

nobj

= astWrite( channel, skyframe );
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might result in the following more compact output:

Begin SkyFrame
Naxes = 2
Ax1 =
Begin SkyAxis
End SkyAxis
Ax2 =
Begin SkyAxis
End SkyAxis

IsA Frame
System = "FK4-NO-E"
Epoch = 1958

End SkyFrame

15.11 Editing Textual Output

The safest advice about editing the textual output from astWrite (or astShow) is “don’t!”—
unless you know what you are doing.

Having given that warning, however, it is sometimes possible to make changes to the text, or
even to write entire Object descriptions from scratch, and to read the results back in to construct
new Objects. Normally, simple changes to numerical values are safest, but be aware that this
is a back door method of creating Objects, so you are on your own! There are a number of
potential pitfalls. In particular:

e astRead is intended for retrieving data written by astWrite and not for reading data input
by humans. As such, the data validation provided is very limited and is certainly not
foolproof. This makes it quite easy to construct Objects that are internally inconsistent by
this means. In contrast, the normal programming interface incorporates numerous checks
designed to make it impossible to construct invalid Objects. You should not necessarily
think you have found a bug if your changes to an Object’s textual description fail to
produce the results you expected!

e In many instances the names associated with values in textual output will correspond with
Object attributes. Sometimes, however, these names may differ from the attribute name.
This is mainly because of length restrictions imposed by other common external formats,
such as FITS headers. Some of the names used do not correspond with attributes at all.

e [t is safest to change single numerical or string values. Beware of changing the size or
shape of Objects (e.g. the number of axes in a Frame). Often, these values must match
others stored elsewhere within the Object and changing them in a haphazard fashion will
not produce useful results.

e Be wary about un-commenting default values. Sometimes this will work, but often these
values are derived from other Objects stored more deeply in the structure and the proper
place to insert a new value is not where the default itself appears.
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15.12 Mixing Objects with other Text

By default, when you use astRead to read from a basic Channel (§15.4), it is assumed that you
are reading a stream of text containing only AST Objects, which follow each other end-to-end.
If any extraneous input data are encountered which do not appear to form part of the textual
description of an Object, then an error will result. In particular, the first input line must identify
the start of an Object description, so you cannot start reading half way through an Object.

Sometimes, however, you may want to store AST Object descriptions intermixed with other
textual data. You can do this by setting the Channel’s boolean (integer) Skip attribute to 1.
This will cause every read to skip over extraneous data until the start of a new AST Object
description, if any, is found. So long as your other data do not mimic the appearance of an AST
Object description, the two sets of data can co-exist.

For example, by setting Skip to 1, the following complete C program will read all the AST
Objects whose descriptions appear in the source of this document, ignoring the other text.
astShow is used to display those found:

#include "ast.h"

main() {
AstChannel *channel;
AstObject *object;

channel = astChannel( NULL, NULL, "Skip=1" );

while ( ( object = astRead( channel ) ) != AST__NULL ) {
astShow( object );
object = astAnnul( object );

}

channel = astAnnul( channel );

15.13 Reading Objects from Files

Thus far, we have only considered the default behaviour of a Channel in reading and writing
Objects through a program’s standard input and output streams. We will now consider how to
access Objects stored in files more directly.

The simple approach is to use the SinkFile and SourceFile attributes of the Channel. For
instance, the following will read a pair of Objects from a text file called “fred.txt”:

astSet ( channel, "SourceFile=fred.txt" );
objl = astRead( channel );

obj2 = astRead( channel );

astClear( channel, "SourceFile" );

Note, the act of clearing the attribute tells AST that no more Objects are to be read from the
file and so the file is then closed. If the attribute is not cleared, the file will remain open and
further Objects can be read from it. The file will always be closed when the Channel is deleted.

This simple approach will normally be sufficient. However, because the AST library is designed
to be used from more than one language, it has to be a little careful about reading and writing
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to files. This is due to incompatibilities that may exist between the file I/O facilities provided
by different languages. If such incompatibilities prevent the above simple system being used, we
need to adopt a system that off-loads all file I/O to external code.

What this means in practice is that if the above simple approach cannot be used, you must
instead provide some simple C functions that perform the actual transfer of data to and from
files and similar external data stores. The functions you provide are supplied as the source
and/or sink function arguments to astChannel when you create a Channel (§15.2). An example
is the best way to illustrate this.

Consider the following simple function called Source. It reads a single line of text from a C
input stream and returns a pointer to it, or NULL if there is no more input:

#include <stdio.h>
#define LEN 200
static FILE *input_stream;

const char *Source( void ) {
static char buffer[ LEN + 2 ];
return fgets( buffer, LEN + 2, input_stream );

}

Note that the input stream is a static variable which we will also access from our main program.
This might look something like this (omitting error checking for brevity):

/* Open the input file. */
input_stream = fopen( "infile.ast", "r" );

/* Create a Channel and read an Object from it. */
channel = astChannel( Source, NULL, "" );
object = astRead( channel );

/* Annul the Channel and close the file when done. */
channel = astAnnul( channel );
(void) fclose( input_stream );

Here, we first open the required input file, saving the resulting FILE pointer. We then pass a
pointer to our Source function as the first argument to astChannel when creating a new Channel.
When we read an Object from this Channel with astRead, the Source function will be called to
obtain the textual data from the file, the end-of-file being detected when this function returns
NULL.

Note, if a value is set for the SourceFile attribute, the astRead function will ignore any source
function specified when the Channel was created.

15.14 Writing Objects to Files

As for reading, writing Objects to files can be done in two different ways. Again, the simple
approach is to use the SinkFile attribute of the Channel. For instance, the following will write
a pair of Objects to a text file called “fred.txt”:
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astSet( channel, "SinkFile=fred.txt" );
nobj = astWrite( channel, objectl );
nobj = astWrite( channel, object2 );
astClear( channel, "SinkFile" );

Note, the act of clearing the attribute tells AST that no more output will be written to the file
and so the file is then closed. If the attribute is not cleared, the file will remain open and further
Objects can be written to it. The file will always be closed when the Channel is deleted.

If the details of the language’s I/O system on the computer you are using means that the above
approach cannot be used, then we can write a Sink function, that writes a line of output text
to a file, and use it in basically the same way as the Source function in the previous section
(§15.13):

static FILE *output_stream;

void Sink( const char *line ) {
(void) fprintf( output_stream, "Y%s\n", line );

}

Note that we must supply the final newline character ourselves.

In this case, our main program would supply a pointer to this Sink function as the second
argument to astChannel, as follows:

/* Open the output file. */
output_stream = fopen( "outfile.ast", "w" );

/* Create a Channel and write an Object to it. */
channel = astChannel( Source, Sink, "" );
nobj = astWrite( channel, object );

/* Annul the Channel and close the file when done. */
channel = astAnnul( channel );
(void) fclose( output_stream );

Note that we can specify a source and/or a sink function for the Channel, and that these may
use either the same file, or different files according to whether we are reading or writing. AST
has no knowledge of the underlying file system, nor of file positioning. It just reads and writes
sequentially. If you wish, for example, to reposition a file at the beginning in between reads and
writes, then this can be done directly (and completely independently of AST) using standard C
functions.

If an error occurs in your source or sink function, you can communicate this to the AST library
by setting its error status to any error value using astSetStatus (§4.15). This will immediately
terminate the read or write operation.

Note, if a value is set for the SinkFile attribute, the astWrite function will ignore any sink
function specified when the Channel was created.
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15.15 Reading and Writing Objects to other Places

It should be obvious from the above (§15.13 and §15.14) that a Channel’s source and sink
functions provide a flexible means of intercepting textual data that describes AST Objects as it
flows in and out of your program. In fact, you might like to regard a Channel simply as a filter
for converting AST Objects to and from a stream of text which is then handled by your source
and sink functions, where the real I/O occurs.

This gives you the ability to store AST Objects in virtually any data system, so long as you
can convert a stream of text into something that can be stored (it need no longer be text)
and retrieve it again. There is generally no need to retain comments. Other possibilities, such
as inter-process and network communication, could also be implemented via source and sink
functions in basically the same way.
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16 Storing AST Objects in FITS Headers (FitsChans)

A FITS header is a sequence of 80-character strings, formatted according to particular rules
defined by the Flexible Image Transport System (FITS). FITS?? is a widely-used standard for
data interchange in astronomy and has also been adopted as a data processing format in some
astronomical data reduction systems. The individual 80-character strings in a FITS header are
usually called cards or header cards (for entirely anachronistic reasons).

A sequence of FITS cards appears as a header at the start of every FITS data file, and sometimes
also at other points within it, and is used to provide ancillary information which qualifies or
describes the main array of data stored in the file. As such, FITS headers are prime territory
for storing information about the coordinate systems associated with data held in FITS files.

In this section, we will examine how to store information in FITS headers directly in the form of
AST Objects—a process which is supported by a specialised class of Channel called a FitsChan.
Our discussion here will turn out to be a transitional step that emphasises the similarities
between a FitsChan and a Channel (§15). At the same time, it will prepare us for the next
section (§17), where we will examine how to use a FitsChan to tackle some of the more difficult
problems that FITS headers can present.

16.1 The Native FITS Encoding

As it turns out, we are not the first to have thought of storing WCS information in FITS
headers. In fact, the original FITS standard (1981 vintage) defined a set of header keywords
for this purpose which have been widely used, although they have proved too limited for many
practical purposes.

At the time of writing, a number of different ways of using FITS headers for storing WCS
information are in use, most (although not all) based on the original standard. We will refer to
these alternative ways of storing the information as FITS encodings but will defer a discussion
of their advantages and limitations until the next section (§17).

Here, we will examine how to store AST Objects directly in FITS headers. In effect, this defines
a new encoding, which we will term the native encoding. This is a special kind of encoding,
because not only does it allow us to associate conventional WCS calibration information with
FITS data, but it also allows any other information that can be expressed in terms of AST
Objects to be stored as well. In fact, the native encoding provides us with facilities roughly
analogous to those of the Channel (§15)—i.e. a lossless way of transferring AST Objects from
program to program—but based on FITS headers instead of free-format text.

16.2 The FitsChan Model

I/O between AST Objects and FITS headers is supported by a specialised form of Channel
called a FitsChan. A FitsChan contains a buffer which may hold any number, including zero, of
FITS header cards. This buffer forms a workspace in which you can assemble FITS cards and
manipulate them before writing them out to a file.

By default, when a FitsChan is first created, it contains no cards and there are five ways of
inserting cards into it:

Zhttp://fits.gsfc.nasa.gov/
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1. You may add cards yourself, one at a time, using astPutFits (§16.8).

2. You may add cards yourself, supplying all cards concatenated into a single string, using
astPutCards (§16.9).

3. You may write an AST Object to the FitsChan (using astWrite), which will have the effect
of creating new cards within the FitsChan which describe the Object (§16.5).

4. You may assign a value to the SourceFile attribute of the FitsChan. The value should
be the path to a text file holding a set of FITS header cards, one per line. When the
SourceFile value is set (using astSetC or astSet), the file is opened and the headers copied
from it into the FitsChan. The file is then immediately closed.

5. You may specify a source function which reads data from some external store of FITS
cards, just like the source associated with a basic Channel (§15.13). If you supply a source
function, it will be called when the FitsChan is created in order to fill it with an initial
set of cards (§16.14).

There are also four ways of removing cards from a FitsChan:

1. You may delete cards yourself, one at a time, using astDelFits (§16.13).

2. You may read an AST Object from the FitsChan (using astRead), which will have the
effect of removing those cards from the FitsChan which describe the Object (§16.10).

3. You may assign a value to the FitsChan’s SinkFile attribute. When the FitsChan is
deleted, any remaining headers are written out to a text file with path equal to the value
of the SinkFile attribute.

4. Alternatively, you may specify a sink function which writes data to some external store
of FITS cards, just like the sink associated with a basic Channel (§15.14). If you supply
a sink function, it will be called when the FitsChan is deleted in order to write out any
FITS cards that remain in it (§16.14). Note, the sink function is not called if the SinkFile
attribute has been set.

Note, in particular, that reading an AST Object from a FitsChan is destructive. That is, it
deletes the FITS cards that describe the Object. The reason for this is explained in §17.5.

In addition to the above, you may also read individual cards from a FitsChan using the function
astFindFits (which is not destructive). This is the main means of writing out FITS cards if you
have not supplied a sink function. astFindFits also provides a means of searching for particular
FITS cards (by keyword, for example) and there are other facilities for overwriting cards when
required (§16.13).

16.3 Creating a FitsChan

The FitsChan constructor function, astFitsChan, is straightforward to use:
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#include "ast.h"
AstFitsChan *fitschan;

fitschan = astFitsChan( NULL, NULL, "Encoding=NATIVE" );

Here, we have omitted any source or sink functions by supplying NULL pointers for the first
two arguments. We have also initialised the FitsChan’s Encoding attribute to NATIVE. This
indicates that we will be using the native encoding (§16.1) to store and retrieve Objects. If this
was left unspecified, the default would depend on the FitsChan’s contents. An attempt is made
to use whatever encoding appears to have been used previously. For an empty FitsChan, the
default is NATIVE, but it does no harm to be sure.

16.4 Addressing Cards in a FitsChan

Because a FitsChan contains an ordered sequence of header cards, a mechanism is needed for
addressing them. This allows you to specify where new cards are to be added, for example, or
which card is to be deleted.

This role is filled by the FitsChan’s integer Card attribute, which gives the index of the current
card in the FitsChan. You can nominate any card you like to be current, simply by setting a
new value for the Card attribute, for example:

int icard;

astSetI( fitschan, "Card", icard )

where “icard” contains the index of the card on which you wish to operate next. Some functions
will update the Card attribute as a means of advancing through the sequence of cards, when
reading them for example, or to indicate which card matches a search criterion.

The default value for Card is one, which is the index of the first card. This means that you can
“rewind” a FitsChan to access its first card by clearing the Card attribute:

astClear( fitschan, "Card" );

The total number of cards in a FitsChan is given by the integer Ncard attribute. This is a
read-only attribute whose value is automatically updated as you add or remove cards. It means
you can address all the cards in sequence using a loop such as the following:

int ncard;

ncard = astGetI( fitschan, "Ncard" );

for ( icard = 1; icard <= ncard; icard++ ) {
astSetI( fitschan, "Card", icard );
<access the current card>
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However, it is usually possible to write slightly tidier loops based on the astFindFits function
described later (§16.6 and §16.13).

If you set the Card attribute to a value larger than Ncard, the FitsChan is regarded as being
positioned at its end-of-file. In this case there is no current card and an attempt to obtain a
value for the Card attribute will always return the value Ncard + 1. When a FitsChan is empty,
it is always at the end-of-file.

16.5 Writing Native Objects to a FitsChan

Having created an empty FitsChan (§16.3), you can write any AST Object to it in the native
encoding using the astWrite function. Let us assume we are writing a SkyFrame,?? as follows:

AstSkyFrame *skyframe;
int nobj;

nobj = astWrite( fitschan, skyframe );

Since we have selected the native encoding (§16.1), there are no restrictions on the class of Object
we may write, so astWrite should always return a value of one, unless an error occurs. Unlike a
basic Channel (§15.3), this write operation will not produce any output from our program. The
FITS headers produced are simply stored inside the FitsChan.

After this write operation, the Ncard attribute will be updated to reflect the number of new
cards added to the FitsChan and the Card attribute will point at the card immediately after
the last one written. Since our FitsChan was initially empty, the Card attribute will, in this
example, point at the end-of-file (§16.4).

The FITS standard imposes a limit of 68 characters on the length of strings which may be
stored in a single header card. Sometimes, a description of an AST Object involves the use of
strings which exceed this limit (e.g. a Frame title can be of arbitrary length). If this occurs, the
long string will be split over two or more header cards. Each “continuation” card will have the
keyword CONTINUE in columns 1 to 8, and will contain a space in column 9 (instead of the usual
equals sign). An ampersand (“&”) is appended to the end of each of the strings (except the last
one) to indicate that the string is continued on the next card.

Note, this splitting of long strings over several cards only occurs when writing AST Objects
to a FitsChan using the astWrite function and the native encoding. If a long string is stored
in a FitsChan using (for instance) the astPutFits or astPutCards function, it will simply be
truncated.

16.6 Extracting Individual Cards from a FitsChan

To examine the contents of the FitsChan after writing the SkyFrame above (§16.5), we must
write a simple loop to extract each card in turn and print it out. We must also remember to
rewind the FitsChan first, e.g. using astClear. The following loop would do:

24More probably, you would want to write a FrameSet, but for purposes of illustration a SkyFrame contains a
more manageable amount of data.
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#include <stdio.h>
char card[ 81 ];

astClear( fitschan, "Card" );
while ( astFindFits( fitschan, "%f", card, 1 ) ) (void) printf( "%s\n", card );

Here, we have used the astFindFits function to find a FITS card by keyword. It is given a
keyword template of “%f”, which matches any FITS keyword, so it always finds the current
card, which it returns. Its fourth argument is set to 1, to indicate that the Card attribute
should be incremented afterwards so that the following card will be found the next time around
the loop. astFindFits returns zero when it reaches the end-of-file and this terminates the loop.

If we were storing the FITS headers in an output FITS file instead of printing them out, we
might use a loop like this but replace “printf” with a suitable data storage operation. This
would only be necessary if we had not provided a sink function for the FitsChan (§16.14).

16.7 The Native FitsChan Output Format

If we print out the FITS header cards describing the SkyFrame we wrote earlier (§16.5), we
should obtain something like the following:

COMMENT AST +++++++++++++++++ttttttttttttttttttttttttttttt ottt ++++++++++++ AST

COMMENT AST Beginning of AST data for SkyFrame object AST
COMMENT AT .ottt i e et e e e e e AST
BEGAST_A= ’SkyFrame’ Description of celestial coordinate system
NAXES_A = 2 / Number of coordinate axes

AX1_ A =7 ’ Axis number 1

BEGAST_B= ’SkyAxis ’
ENDAST_A= ’SkyAxis ’

Celestial coordinate axis
End of object definition

/
/
/
/
/
/
’SkyAxis ’ / Celestial coordinate axis
/
/
/
/
/

AX2_ A =7 ’ Axis number 2

BEGAST_C=

ENDAST_B= ’SkyAxis ’ End of object definition

ISA_LA = ’Frame ’ Coordinate system description

SYSTEM_A= ’FK4-NO-E’ Celestial coordinate system type

EPOCH_A = 19568.0 / Besselian epoch of observation

ENDAST_C= ’SkyFrame’ End of object definition

COMMENT AT ottt ittt ettt e e e e AST
COMMENT AST End of AST data for SkyFrame object AST
COMMENT AST ———————m oo oo o AST

As you can see, this resembles the information that would be written to a basic Channel to
describe the same SkyFrame (§15.8), except that it has been formatted into 80-character header
cards according to FITS conventions.

There are also a number of other differences worth noting:

1. There is no unnecessary information about default values provided for the benefit of the
human reader. This is because the Full attribute for a FitsChan defaults to —1, thus
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suppressing this information (c.f. §15.9). You can restore the information if you wish by
setting Full to 0 or 41, in which case additional COMMENT cards will be generated to
hold it.

2. The information is not indented, because FITS does not allow this. However, if you change
the Full attribute to 0 or +1, comments will be included that are intended to help break
up the sequence of headers and highlight its structure. This will probably only be of use
if you are attempting to track down a problem by examining the FITS cards produced in
detail.

3. The FITS keywords which appear to the left of the “=" signs have additional characters
(“_A”, “_B”, etc.) appended to them. This is done in order to make each keyword unique.

This last point is worth further comment and is necessary because the FITS standard only allows
for certain keywords (such as COMMENT and HISTORY) to appear more than once. astWrite
therefore appends an arbitrary sequence of two characters to each new keyword it generates in
order to ensure that it does not duplicate any already present in the FitsChan.

The main risk from not following this convention is that some software might ignore (say) all but
the last occurrence of a keyword before passing the FITS headers on. Such an event is unlikely,
but would obviously destroy the information present, so ast Write enforces the uniqueness of the
keywords it uses. The extra characters added are ignored when the information is read back.

As with a basic Channel, you can also suppress the comments produced in a FitsChan by
setting the boolean (integer) Comment attribute to zero (§15.10). However, FITS headers are
traditionally generously commented, so this is not recommended.

16.8 Adding Individual Cards to a FitsChan

To insert individual cards into a FitsChan, prior to reading them back as Objects for example,
you should use the astPutFits function. You can insert a card in front of the current one as
follows:

astPutFits( fitschan, card, 0 );

where the third argument of zero indicates that the current card should not be overwritten.
Note that facilities are not provided by AST for formatting the card contents.

After inserting a card, the FitsChan’s Card attribute points at the original Card, or at the
end-of-file if the FitsChan was originally empty. Entering a sequence of cards is therefore
straightforward. If “cards” is an array of pointers to strings containing FITS header cards
and “ncards” is the number of cards, then a loop such as the following will insert the cards in
sequence into a FitsChan:

#define MAXCARD 100
char *cards[ MAXCARD ];
int ncard;

for ( icard = 0; icard < ncard; icard++ ) astPutFits( fitschan, cards[ icard ], 0 );
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The string containing a card need not be null terminated if it is at least 80 characters long (we
have not allocated space for the strings themselves in this brief example).

Note that astPutFits enforces the validity of a FitsChan by rejecting any cards which do not
adhere to the FITS standard. If any such cards are detected, an error will result.

16.9 Adding Concatenated Cards to a FitsChan

If you have all your cards concatenated together into a single long string, each occupying 80
characters (with no delimiters), you can insert them into a FitsChan in a single call using
astPutCards. This call first empties the supplied FitsChan of any existing cards, then inserts
the new cards, and finally rewinds the FitsChan so that a subsequent call to astRead will start
reading from the first supplied card. The astPutCards function uses astPutFits internally to
interpret and store each individual card, and so the caveats in §16.8 should be read.

For instance, if you are using the CFITSIO library for access to FITS files, you can use the
CFITSIO fits_hdr2str function to obtain a string suitable for passing to astPutCards:

if ( 'fits_hdr2str( fptr, O, NULL, O, &header, &nkeys, &status ) )
fitschan = astFitsChan( NULL, NULL, "" );
astPutCards( fitschan, header );
header = free( header );
wcsinfo = astRead( fitschan );

16.10 Reading Native Objects From a FitsChan

Once you have stored a FITS header description of an Object in a FitsChan using the native
encoding (§16.5), you can read it back using astRead in much the same way as with a basic
Channel (§15.4). Similar comments about validating the Object you read also apply (§15.6). If
you have just written to the FitsChan, you must remember to rewind it first:

AstObject *object;

astClear( fitschan, "Card" );
object = astRead( fitschan );

An important feature of a FitsChan is that read operations are destructive. This means that
if an Object description is found, it will be consumed by astRead which will remove all the
cards involved, including associated COMMENT cards, from the FitsChan. Thus, if you write
an Object to a FitsChan, rewind, and read the same Object back, you should end up with the
original FitsChan contents. If you need to circumvent this behaviour for any reason, it is a
simple matter to make a copy of a FitsChan using astCopy (§4.13). If you then read from the
copy, the original FitsChan will remain untouched.
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After a read completes, the FitsChan’s Card attribute identifies the card immediately following
the last card read, or the end-of-file of there are no more cards.

Since the native encoding is being used, any long strings involved in the object description will
have been split into two or more adjacent contuation cards when the Object was stored in the
header using function astWrite. The astRead function reverses this process by concatenating
any such adjacent continuation cards to re-create the original long string.

16.11 Saving and Restoring Multiple Objects in a FitsChan

When using the native FITS encoding, multiple Objects may be stored and all I/O operations
are sequential. This means that you can simply write a sequence of Objects to a FitsChan.
After each write operation, the Card attribute will be updated so that the next write appends
the next Object description to the previous one.

If you then rewind the FitsChan, you can read the Objects back in the original order. Reading
them back will, of course, remove their descriptions from the FitsChan (§16.10) but the behaviour
of the Card attribute is such that successive reads will simply return each Object in sequence.

The only thing that may require care, given that a FitsChan can always be addressed randomly
by setting its Card attribute, is to avoid writing one Object on top of another. For obvious
reasons, the Object descriptions in a FitsChan must remain separate if they are to make sense
when read back.

16.12 Mixing Native Objects with Other FITS Cards

Of course, any real FITS header will contain other information besides AST Objects, if only
the mandatory FITS cards that must accompany all FITS data. When FITS headers are read
in from a real dataset, therefore, any native AST Object descriptions will be inter-mixed with
many other cards.

Because this is the normal state of affairs, the boolean (integer) Skip attribute for a FitsChan
defaults to one. This means that when you read an Object From a FitsChan, any irrelevant
cards will simply be skipped over until the start of the next Object description, if any, is found.
If you start reading part way through an Object description, no error will result. The remainder
of the description will simply be skipped.

Setting Skip to zero will change this behaviour to resemble that of a basic Channel (§15.12),
where extraneous data are not permitted by default, but this will probably rarely be useful.

16.13 Finding and Changing Cards in a FitsChan

You can search for, and retrieve, particular cards in a FitsChan by keyword, using the function
astFindFits. This performs a search, starting at the current card, until it finds a card whose
keyword matches the template you supply, or the end-of-file is reached.

If a suitable card is found, astFindFits optionally returns the card’s contents and then sets
the FitsChan’s Card attribute either to identify the card found, or the one following it. The
way you want the Card attribute to be set is indicated by the final boolean (int) argument to
astFindFits. A value of one is returned to indicate success. If a suitable card cannot be found,
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astFindFits returns a value of zero to indicate failure and sets the FitsChan’s Card attribute to
the end-of-file.

Requesting that the Card attribute be set to indicate the card that astFindFits finds is useful
if you want to replace that card with a new one, as in this example:

char newcard[ 81 ];

(void) astFindFits( fitschan, "AIRMASS", NULL, O );
astPutFits( fitschan, newcard, 1 );

Here, astFindFits is used to search for a card with the keyword AIRMASS, with a NULL pointer
being given to indicate that we do not want the card’s contents returned. If the card is found,
astPutFits then overwrites it with a new card. Otherwise, the Card attribute ends up pointing
at the end-of-file and the new card is simply appended to the end of the FitsChan.

A similar approach can be used to delete selected cards from a FitsChan using astDelFits, which
deletes the current card:

if ( astFindFits( fitschan, "BSCALE", NULL, O ) ) astDelFits( fitschan );

This deletes the first card, if any, with the BSCALE keyword.

Requesting that astFindFits increments the Card attribute to identify the card following the
one found is more useful when writing loops. For example, the following loop extracts each card
whose keyword matches the template “CD%6d” (that is, “CD” followed by six decimal digits):

while ( astFindFits( fitschan, "CD%6d", card, 1 ) {
<process the card’s contents>

}

For further details of keyword templates, see the description of astFindFits in Appendix B.

16.14 Source and Sink Functions for FitsChans

The use of source and sink functions with a FitsChan is optional. This is because you can always
arrange to explicitly fill a FitsChan with FITS cards (§16.8 and §16.9) and you can also extract
any cards that remain and write them out yourself (§16.6) before you delete the FitsChan.

If you choose to use these functions, however, they behave in a very similar manner to those used
by a Channel (§15.13 and §15.14). You supply pointers to these functions, as arguments to the
constructor function astFitsChan when you create the FitsChan (§16.3). The source function is
invoked implicitly at this point to fill the FitsChan with FITS cards and the FitsChan is then
rewound, so that the first card becomes current. The sink function is automatically invoked
later, when the FitsChan is deleted, in order to write out any cards that remain in it.

The only real difference between the source and sink functions for a FitsChan and a basic
Channel is that FITS cards are limited in length to 80 characters, so the choice of buffer size
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is simplified. The “Source” and “Sink” functions in §15.13 and §15.14 could therefore be used
to access FITS headers stored in text files simply by changing LEN to be 80. If you were not
accessing a text file, however, appropriate changes to the I/O statements would be needed since
the separating newline characters would be absent. The details obviously depend on the format
of the file you are handling, which need not necessarily be a true FITS file.
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17 Using Foreign FITS Encodings

We saw in the previous section (§16) how to store and retrieve any kind of AST Object in a
FITS header by using a FitsChan. To achieve this, we set the FitsChan’s Encoding attribute to
NATIVE. However, the Objects we wrote could then only be read back by other programs that
use AST.

In practice, we will also encounter FITS headers containing WCS information written by other
software systems. We will probably also need to write FITS headers in a format that can be
understood by these systems. Indeed, this interchange of data is one of the main reasons for the
existence of FITS, so in this section we will examine how to accommodate these requirements.

17.1 The Foreign FITS Encodings

As mentioned previously (§16.1), there are a number of conventions currently in use for storing
WCS information in FITS headers, which we call encodings. Here, we are concerned with those
encodings defined by software systems other than AST, which we term foreign encodings.

Currently, AST supports six foreign encodings, which may be selected by setting the Encoding
attribute of a FitsChan to one of the following (character string) values:

DSS
This encoding stores WCS information using the convention developed at the
Space Telescope Science Institute for the Digitised Sky Survey (DSS) astro-
metric plate calibrations. DSS images which use this convention are widely
available and it is understood by a number of important and well-established
astronomy applications.

However, the calibration model used (based on a polynomial fit) is not eas-
ily applicable to other types of data and creating the polynomial coefficients
needed to calibrate your own images can prove difficult. For this reason, the
DSS encoding is probably best viewed as a “read-only” format. It is possible,
however, to read in WCS information using this encoding and then to write it
back out again, so long as only minor changes have been made.

FITS-WCS
This encoding is very important because it is based on a new FITS standard
which should, for the first time, address the problem of celestial coordinate sys-
tems in a proper manner, by considerably extending the original FITS standard.

The conventions used are described in a series of papers by E.W. Greisen,
M. Calabretta, et. al., often referred to as the “FITS-WCS papers”. They
are described at http://fits.gsfc.nasa.gov /fits_wcs.html. Now that the first two
papers in this series have been agreed, this encoding should be understood by
any FITS-WCS compliant software and it is likely to be adopted widely for
FITS data in future. For details of the coverage of these conventions provided
by the FitsChan class, see Appendix G.

FITS-IRAF
This encoding is based on the conventions described in the document “World
Coordinate Systems Representations Within the FITS Format” by R.J. Hanisch
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and D.G. Wells, 1988.2° It is employed by the IRAF data analysis facility, so its
use will facilitate data exchange with IRAF. This encoding is in effect a sub-set
of the current FITS-WCS encoding.

FITS-PC
This encoding is based on a previous version of the proposed new FITS WCS
and scaling. Versions of AST prior to V1.5 used this scheme for the FITS-WCS
encoding. As of V1.5, FITS-WCS uses CDi_j keywords instead.?¢ The FITS-
PC encoding is included in AST V1.5 only to allow FITS-WCS data created
with previous versions to be read. It should not, in general, be used to create
new data sets.

FITS-AIPS
This encoding is based on the conventions described in the document “Non-
linear Coordinate Systems in AIPS” by Eric W. Greisen (revised 9th September,
1994).27 It is currently employed by the AIPS data analysis facility, so its use
will facilitate data exchange with AIPS. This encoding uses CROTAi and CDELTi
keywords to describe axis rotation and scaling.

FITS-AIPS++
Encodes coordinate system information in FITS header cards using the conven-
tions used by the AIPS++ project. This is an extension of FITS-AIPS which
includes some of the features of FITS-PC and FITS-IRAF.

For more detail about the above encodings, see the description of the Encoding attribute in
Appendix C.

17.2 Limitations of Foreign Encodings

The foreign encodings available for storing WCS information in FITS headers have a number of
limitations when compared with the native encoding of AST Objects (§16). The main ones are:

1. Only one class of AST Object, the FrameSet, may be represented using a foreign FITS
encoding. This should not come as a surprise, because the purpose of storing WCS infor-
mation in FITS headers is to attach coordinate systems to an associated array of data.
Since the FrameSet is the AST Object designed for the same purpose (§13.4), there is a
natural correspondence.

The way in which a FrameSet is translated to and from the foreign encoding also follows
from this correspondence. The FrameSet’s base Frame identifies the data grid coordinates
of the associated FITS data. These are the same as FITS pixel coordinates, in which
the first pixel (in 2 dimensions) has coordinates (1,1) at its centre. Similarly, the current
Frame of the FrameSet identifies the FITS world coordinate system associated with the
data.

25 Available by ftp from fits.cv.nrao.edu /fits/documents/wcs/wcs88.ps.Z

26There are many other differences between the previous and the current FITS-WCS encodings. The keywords
to describe axis rotation and scaling is used purely as a label to identify the scheme.

27 Available by ftp from fits.cv.nrao.edu /fits/documents/wcs/aips27.ps.Z
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2. You may store a representation of only a single FrameSet in any individual set of FITS
header cards (i.e. in a single FitsChan) at one time. If you attempt to store more than
one, you may over-write the previous one or generate an invalid representation of your
WCS information.

This is mainly a consequence of the use of fixed FITS keywords by foreign encodings and
the fact that you cannot, in general, have multiple FITS cards with the same keyword.

3. In general, it will not be possible to store every possible FrameSet that you might con-
struct. Depending on the encoding, only certain FrameSets that conform to particular
restrictions can be represented and, even then, some of their information may be lost.
See the description of the Encoding attribute in Appendix C for more details of these
limitations.

It should be understood that using foreign encodings to read and write information held in AST
Objects is essentially a process of converting the data format. As such, it potentially suffers from
the same problems faced by all such processes, i.e. differences between the AST data model and
that of the foreign encoding may cause some information to be lost. Because the AST model is
extremely flexible, however, any data loss can largely be eliminated when reading. Instead, this
effect manifests itself in the form of the above encoding-dependent restrictions on the kind of
AST Objects which may be written.

One of the aims of the AST library, of course, is to insulate you from the details of these foreign
encodings and the restrictions they impose. We will see shortly, therefore, how AST provides
a mechanism for determining whether your WCS information satisfies the necessary conditions
and allows you to make an automatic choice of which encoding to use.

17.3 Identifying Foreign Encodings on Input

Let us now examine the practicalities of extracting WCS information from a set of FITS header
cards which have been written by some other software system. We will pretend that our program
does not know which encoding has been used for the WCS information and must discover this
for itself. In order to have a concrete example, however, we will use the following set of cards.
These use the FITS-AIPS encoding and contain a typical mix of other FITS cards which are
irrelevant to the WCS information in which we are interested:

SIMPLE = T / Written by IDL: 30-Jul-1997 05:35:42.00
BITPIX = -32 / Bits per pixel.

NAXIS = 2 / Number of dimensions
NAXIS1 = 300 / Length of x axis.
NAXIS2 = 300 / Length of y axis.
CTYPE1 = ’GLON-ZEA’ / X-axis type

CTYPE2 = ’GLAT-ZEA’ / Y-axis type

CRVAL1 = -149.56866 / Reference pixel value
CRVAL2 = -19.758201 / Reference pixel value
CRPIX1 = 150.500 / Reference pixel
CRPIX2 = 150.500 / Reference pixel
CDELT1 = -1.20000 / Degrees/pixel

CDELT2 = 1.20000 / Degrees/pixel

CROTA1 = 0.00000 / Rotation in degrees.
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SURVEY = ’COBE DIRBE’

BUNITS = ’MJy/sr °’ /

ORIGIN = ’CDAC ’ / Cosmology Data Analysis Center

TELESCOP= ’COBE ’ / COsmic Background Explorer satellite
INSTRUME= °DIRBE ? / COBE instrument [DIRBE, DMR, FIRAS]
PIXRESOL= 9 / Quad tree pixel resolution [6, 9]

DATE = ’27/09/94° / FITS file creation date (dd/mm/yy)
DATE-MAP= ’16/09/94° / Date of original file creation (dd/mm/yy)
COMMENT COBE specific keywords

DATE-BEG= ’08/12/89° / date of initial data represented (dd/mm/yy)
DATE-END= ’25/09/90° / date of final data represented  (dd/mm/yy)

The first step is to create a FitsChan and insert these cards into it. If “cards” is an array of
pointers to character strings holding the header cards and “ncards” is the number of cards, this
could be done as follows:

#include "ast.h"
#define MAXCARD 100
AstFitsChan *fitschan;
char *cards[ MAXCARD 1];
int icard, ncard;

fitschan = astFitsChan( NULL, NULL, "" );
for ( icard = 0; icard < ncard; icard++ ) astPutFits( fitschan, cards[ icard ], 0 );

Note that we have not initialised the Encoding attribute of the FitsChan as we did in §16.3 when
we wanted to use the native encoding. This is because we are pretending not to know which
encoding to use and want AST to determine this for us. By leaving the Encoding attribute un-
set, its default value will adjust to whichever encoding AST considers to be most appropriate,
according to the FITS header cards present. For details of how this choice is made, see the
description of the Encoding attribute in Appendix C.

This approach has the obvious advantages of making our program simpler and more flexible
and of freeing us from having to know about the different encodings available. As a bonus, it
also means that the program will be able to read any new encodings that AST may support in
future, without needing to be changed.

At this point, we could enquire the default value of the Encoding attribute, which indicates
which encoding AST intends to use, as follows:

const char *encode;

encode = astGetC( fitschan, "Encoding" );

The result of this enquiry would be the string “FITS-AIPS”. Note that we could also have set
the FitsChan’s Encoding attribute explicitly, such as when creating it:
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fitschan = astFitsChan( NULL, NULL, "Encoding=FITS-AIPS" );

If we tried to read information using this encoding (§17.4), but failed, we could then change
the encoding and try again. This would allow our program to take control of how the optimum
choice of encoding is arrived at. However, it would also involve using explicit knowledge of the
encodings available and this is best avoided if possible.

17.4 Reading Foreign WCS Information from a FITS Header

Having stored a set of FITS header cards in a FitsChan and determined how the WCS infor-
mation is encoded (§17.3), the next step is to read an AST Object from the FitsChan using
astRead. We must also remember to rewind the FitsChan first, if necessary, such as by clearing
its Card attribute, which defaults to 1:

AstObject *wcsinfo;

astClear( fitschan, "Card" );
wcsinfo = astRead( fitschan );

If the pointer returned by astRead is not equal to AST__NULL, then an Object has been read
successfully. Otherwise, there was either no information to read or the choice of FITS encoding
(§17.3) was inappropriate.

At this point you might like to indulge in a little data validation along the lines described in
§15.6, for example:

if ( !strcmp( astGetC( wcsinfo, "Class" ), "FrameSet" ) ) {
<the Object is a FrameSet, so use it>

} else {
<something unexpected was read>

}

If a foreign encoding has definitely been used, then the Object will automatically be a FrameSet
(§17.2), so this stage can be omitted. However, if the native encoding (§16.1) might have been
employed, which is a possibility if you accept the FitsChan’s default Encoding value, then any
class of Object might have been read and a quick check would be worthwhile.

If you used astShow (§4.4) to examine the FrameSet which results from reading our example
FITS header (§17.3), you would find that its base Frame describes the image’s pixel coordinate
system and that its current Frame is a SkyFrame representing galactic coordinates. These two
Frames are inter-related by a Mapping (actually a CmpMap) which incorporates the effects of
various rotations, scalings and a “zenithal equal area” sky projection, so that each pixel of the
FITS image is mapped on to a corresponding sky position in galactic coordinates.

Because this FrameSet may be used both as a Mapping (§13.6) and as a Frame (§13.8), it may
be employed directly to perform many useful operations without any need to decompose it into
its component parts. These include:
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Transforming data grid (FITS pixel) coordinates into galactic coordinates and vice versa
(§13.6).

Formatting coordinate values (either pixel or galactic coordinates) ready for display to a
user (§7.6 and §7.7).

Enquiring about axis labels (or other axis information—=§7.5) which might be used, for
example, to label columns of coordinates in a table (§7.4).

Aligning the image with another image from which a similar FrameSet has been obtained

(§14.3).

Creating a Plot (§21), which can be used to overlay a variety of graphical information
(including a coordinate grid—Figure 8) on the displayed image.

Generating a new FrameSet which reflects any geometrical processing you perform on the
associated image data (§14.5). This new FrameSet could then be written out as FITS
headers to describe the modified image (§17.7).

If the FrameSet contains other Frames (apart from the base and current Frames), then you would
also have access to information about other coordinate systems associated with the image.

17.5 Removing WCS Information from FITS Headers—the Destructive Read

It is instructive at this point to examine the contents of a FitsChan after we have read a FrameSet
from it (§17.4). The following would rewind our FitsChan and display its contents:

#include <stdio.h>
char card[ 81 ];

astClear( fitschan, "Card" );
while ( astFindFits( fitschan, "%f", card, 1 ) ) (void) printf( "¥%s\n", card );

The output, if we started with the example FITS header in §17.3, might look like this:

SIMPLE = T / Written by IDL: 30-Jul-1997 05:35:42.00
BITPIX = -32 / Bits per pixel.

NAXIS = 2 / Number of dimensions

NAXIS1 = 300 / Length of x axis.

NAXIS2 = 300 / Length of y axis.

SURVEY = ’COBE DIRBE’

BUNITS = ’MJy/sr °’

ORIGIN = ’CDAC ? / Cosmology Data Analysis Center

TELESCOP= ’COBE ’ / COsmic Background Explorer satellite
INSTRUME= °DIRBE ’ / COBE instrument [DIRBE, DMR, FIRAS]
PIXRESOL= 9 / Quad tree pixel resolution [6, 9]

DATE = 227/09/94° / FITS file creation date (dd/mm/yy)
DATE-MAP= ’16/09/94° / Date of original file creation (dd/mm/yy)
COMMENT COBE specific keywords

DATE-BEG= ’08/12/89° / date of initial data represented (dd/mm/yy)

DATE-END= ’25/09/90° / date of final data represented  (dd/mm/yy)
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Comparing this with the original, you can see that all the FITS cards that represent WCS
information have been removed. They have effectively been “sucked out” of the FitsChan by
the destructive read that astRead performs and converted into an equivalent FrameSet. AST
remembers where they were stored, however, so that if we later write WCS information back
into the FitsChan (§17.7) they will, as far as possible, go back into their original locations. This
helps to preserve the overall layout of the FITS header.

You can now see why astRead performs destructive reads. It is a mechanism for removing WCS
information from a FITS header while insulating you, as a programmer, from the details of the
encoding being used. It means you can ensure that all relevant header cards have been removed,
giving you a clean slate, without having to know which FITS keywords any particular encoding
uses.

Clearing this WCS information out of a FITS header is particularly important when considering
how to write new WCS information back after processing (§17.7). If any relevant FITS cards
are left over from the input dataset and find their way into the new processed header, they could
interfere with the new information being written.2® The destructive read mechanism ensures
that this doesn’t happen.

17.6 Propagating WCS Information through Data Processing Steps

One of the purposes of AST is to make it feasible to propagate WCS information through
successive stages of data processing, so that it remains consistent with the associated image
data. As far as possible, this should happen regardless of the FITS encoding used to store the
original WCS information.

If the data processing being performed does not change the relationship between image pixel
and world coordinates (whatever these may be), then propagation of the WCS information is
straightforward. You can simply copy the FITS header from input to output.

If this relationship changes, however, then the WCS information must be processed alongside
the image data and a new FITS header generated to represent it. In this case, the sequence of
operations within your program would probably be as follows:

1. Read the image data and associated FITS header from the input dataset, putting the
header cards into a FitsChan (§17.3).

2. Read an AST Object, a FrameSet, from the FitsChan (typically using a foreign FITS
encoding—§17.4).

3. Process the image data and modify the FrameSet accordingly (e.g. §14.5).
4. Write the FrameSet back into the FitsChan (§17.7).
5. Perform any other modification of FITS header cards your program may require.

6. Write the FitsChan contents (i.e. processed header cards) and image data to the output
dataset.

28This can happen if a particular keyword is present in the input header but is not used in the output header
(whether particular keywords are used can depend on the WCS information being stored). In such a case, the
original value would not be over-written by a new output value, so would remain erroneously present.
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In stage (2), the original WCS information will be removed from the FitsChan by a destructive
read. Later, in stage (4), new WCS information is written to replace it. This is the process
which we consider next (§17.7).

17.7 Writing Foreign WCS Information to a FITS Header

Before we can write processed WCS information held in a FrameSet back into a FitsChan in
preparation for output, we must select the FITS encoding to use. Unfortunately, we cannot
simply depend on the default value of the Encoding attribute, as we did when reading the input
information (§17.3), because the destructive action of reading the WCS data (§17.5) will have
altered the FitsChan’s contents. This, in turn, will have changed the choice of default encoding,
probably causing it to revert to NATIVE.

We will return to the question of the optimum choice of encoding below. For now, let’s assume
that we want to use the same encoding for output as we used for input. Since we enquired
what that was before we read the input WCS data from the FitsChan (§17.3), we can now set
that value explicitly. We can also set the FitsChan’s Card attribute back to 1 at the same time
(because the write will fail if the FitsChan is not rewound). astWrite can then be used to write
the output WCS information into the FitsChan:

int nobj;

astSet( fitschan, "Card=1, Encoding=/s", encode );
nobj = astWrite( fitschan, wcsinfo );

The value returned by astWrite (assigned to “nobj”) indicates how many Objects were written.
This will either be 1 or zero. A value of zero is used to indicate that the information could not
be encoded in the form you requested. If this happens, nothing will have been written.

If your choice of encoding proves inadequate, the probable reason is that the changes you have
made to the FrameSet have caused it to depart from the data model which the encoding assumes.
AST knows about the data model used by each encoding and will attempt to simplify the
FrameSet you provide so as to fit into that model, thus relieving you of the need to understand
the details and limitations of each encoding yourself.? When this attempt fails, however, you
must consider what alternative encoding to use.

Ideally, you would probably want to try a sequence of alternative encodings, using an approach
such as the following:

/x 1. %/
astSet( fitschan, "Card=1, Encoding=FITS-IRAF" );
if ( lastWrite( fitschan, wcsinfo ) ) {

/* 2. */
astSetC( fitschan, "Encoding", encode );
if ( lastWrite( fitschan, wcsinfo ) ) {

298toring values in the FitsChan for FITS headers NAXIS1, NAXIS2, etc. (the grid dimensions in pixels),
before invoking astWrite can sometimes help to produce a successful write.
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/*x 3. %/
astSet( fitschan, "Encoding=NATIVE" );
(void) astWrite( fitschan, wcsinfo );

That is:

1. Start by trying the FITS-WCS encoding, on the grounds that FITS should provide a uni-
versal interchange standard in which all WCS information should be expressed if possible.

2. If that fails, then try the original encoding used for the input WCS information, on the
grounds that you are at least not making the information any harder for others to read
than it originally was.

3. If that also fails, then you are probably trying to store fairly complex information for which
you need the native encoding. Only other AST programs will then be able to read this
information, but these are probably the only programs that will be able to do anything
sensible with it anyway.

An alternative approach might be to encode the WCS information in several ways, since this
gives the maximum chance that other software will be able to read it. This approach is only
possible if there is no significant conflict between the FITS keywords used by the different
encodings®’. Adopting this approach would simply require multiple calls to astWrite, rewinding
the FitsChan and changing its Encoding value before each one.

Unfortunately, however, there is a drawback to duplicating WCS information in the FITS header
in this way, because any program which modifies one version of this information and simply
copies the remainder of the header will risk producing two inconsistent sets of information. This
could obviously be confusing to subsequent software. Whether you consider this a worthwhile
risk probably depends on the use to which you expect your data to be put.

30In practice, this means you should avoid mixing FITS-IRAF, FITS-WCS, FITS-AIPS, FITS-AIPS++ and
FITS-PC encodings since they share many keywords.
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18 Storing AST Objects as XML (XmlChan)

XML3! is fast becoming the standard format for passing structured data around the internet,
and much general purpose software has been written for tasks such as the parsing, editing, display
and transformation of XML data. The XmlChan class (a specialised form of Channel) provides
facilities for storing AST objects externally in the form of XML documents, thus allowing such
software to be used.

The primary XML format used by the XmlChan class is a fairly close transliteration of the
AST native format produced by the basic Channel class. Currently, there is no DTD or schema
defining the structure of data produced in this format by an XmlChan. The following is a native
AST representation of a simple 1-D Frame (including comments and with the Full attribute set
to zero so that some default attribute values are included as extra comments):

Begin Frame # Coordinate system description
# Title = "1-d coordinate system" # Title of coordinate system
Naxes = 1 # Number of coordinate axes
Domain = "SCREEN" # Coordinate system domain
# Lbll = "Axis 1" # Label for axis 1
# Unil = "cm" # Units for axis 1
Ax1 = # Axis number 1
Begin Axis # Coordinate axis
Unit = "cm" # Axis units
End Axis
End Frame

The corresponding XmlChan output would look like:

<Frame xmlns="http://www.starlink.ac.uk/ast/xml/"
desc="Coordinate system description">
<_attribute name="Title" quoted="true" value="1-d coordinate system"
desc="Title of coordinate system" default="true"/>
<_attribute name="Naxes" value="1" desc="Number of coordinate axes"/>
<_attribute name="Domain" quoted="true" value="SCREEN"
desc="Coordinate system domain"/>
<_attribute name="Lbll" quoted="true" value="Axis 1"
desc="Label for axis 1" default="true"/>
<_attribute name="Unil" quoted="true" value="cm"
desc="Units for axis 1" default="true"/>
<Axis label="Ax1" desc="Coordinate axis">
<!--Axis number 1-->
<_attribute name="Unit" quoted="true" value="cm" desc="Axis units"/>
</Axis>
</Frame>

Notes:

1. The AST class name is used as the name for an XML element which contain a description
of an AST object.

3http:/ /www.w3.org/XML/
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2. AST attributes are described by XML elements with the name “_attribute”. Unfortu-
nately, the word “attribute” is also used by XML to refer to a “name=value” pair within
an element start tag. So for instance, the “Title” attribute of the AST Frame object is
described within an XML element with name “_attribute” in which the XML attribute
“name” has the value “Title”, and the XML attribute “value” has the value “1-d coordi-
nate system”. The moral is always to be clear clear about the context (AST or XML) in
which the word attribute is being used!

3. The XML includes comments both as XML attributes with the name “desc”, and as
separate comment tags.

4. Elements which describe default values are identified by the fact that they have an XML
attribute called “default” set to the value “true”. These elements are ignored when being
read back into an XmlChan.

5. The outer-most XML element of an AST object will set the default namespace to http://wuw.starlink.ac.t
which will be inherited by all nested elements.

The XmlChan class changes the default value for the Comment and Full attributes (inherited
from the base Channel class) to zero and -1, resulting in terse output by default. With the
default values for these attributes, the above XML is reduced to the following:

<Frame xmlns="http://www.starlink.ac.uk/ast/xml/">
<_attribute name="Naxes" value="1"/>
<_attribute name="Domain" quoted="true" value="SCREEN"/>
<Axis label="Ax1">
<_attribute name="Unit" quoted="true" value="cm"/>
</Axis>
</Frame>

The XmlChan class uses the Skip attributes very similarly to the Channel class. If Skip is zero
(the default) then an error will be reported if the text supplied by the source function does not
begin with an AST Object. If Skip is non-zero, then initial text is skipped over without error
until the start of an AST object is found. this allows an AST object to be located within a
larger XML document.

18.1 Reading IVOA Space-Time-Coordinates XML (STC-X) Descriptions

The XmlChan class also provides support for reading (but not writing) XML documents which
use a restricted subset of an early draft (V1.20) of the IVOA Space-Time-Coordinates XML
(STC-X) system. The version of STC-X finally adopted by the IVOA differs in several significant
respects from V1.20, and so the STC-X support currently provided by AST is mainly of historical
interest. Note, AST also supports the alternative “STC-S” linear string description of the STC
model (see §19).

STC-X V1.20 is documented at http://www.ivoa.net/Documents/WD/STC/STC-20050225.html,
and the current version is documented at http://www.ivoa.net/Documents/latest/STC-X.html.

When an STC-X document is read using an XmlChan, the read operation produces an AST
Object of the Stc class, which is itself a subclass of Region. Specifically, each such Object will be
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an instance of StcSearchLocation, StcResourceProfile, StcCatalogEntryLocation or StcObsDat-
aLocation. See the description of the XmlChan class and the XmlFormat attribute for further
details.
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19 Reading and writing STC-S descriptions (StcsChans)

The StcsChan class provides facilities for reading and writing IVOA “STC-S” descriptions. STC-
S (see http://www.ivoa.net/Documents/latest/STC-S.html) is a linear string syntax that allows
simple specification of the STC metadata describing a region in an astronomical coordinate
system. AST supports a subset of the STC-S specification, allowing an STC-S description
of a region within an AST-supported astronomical coordinate system to be converted into an
equivalent AST Region object, and vice-versa. For further details, see the full description of the
StesChan class in Appendix D.
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20 Creating Your Own Private Mappings (IntraMaps)

20.1 The Need for Extensibility

However many Mapping classes are provided by AST, sooner or later you will want to transform
coordinates in some way that has not been foreseen. You might want to plot a graph in some
novel curvilinear coordinate system (perhaps you already have a WCS system in your software
and just want to use AST for its graphical capabilities). Alternatively, you might need to cali-
brate a complex dataset (like an objective prism plate) where each position must be converted to
world coordinates with reference to calibration data under the control of an elaborate algorithm.

In such cases, it is clear that the basic pre-formed components provided by AST for building
Mappings are just not enough. What you need is access to a programming language. However,
if you write your own software to transform coordinate values, then it must be made available
in the form of an AST class (from which you can create Objects) before it can be used in
conjunction with other AST facilities.

At this point you might consider writing your own AST class, but this is not recommended.
Not only would the internal conventions used by AST take some time to master, but you might
also find yourself having to change your software whenever a new version of AST was released.
Fortunately, there is a much easier route provided by the IntraMap class.

20.2 The IntraMap Model

To allow you to write your own Mappings, AST provides a special kind of Mapping called an
IntraMap. An IntraMap is a sort of “wrapper” for a coordinate transformation function written
in C. You write this function yourself and then register it with AST. This, in effect, creates a
new class from which you can create Mappings (i.e. IntraMaps) which will transform coordinates
in whatever way your transformation function specifies.

Because IntraMaps are Mappings, they may be used in the same way as any other Mapping.
For instance, they may be combined in series or parallel with other Mappings using a CmpMap
(§6), they may be inverted (§5.5), you may enquire about their attributes (§4.5), they may be
inserted into FrameSets (§13), etc. They do, however, have some important limitations of which
you should be aware before we go on to consider how to create them.

20.3 Limitations of IntraMaps

By now, you might be wondering why any other kind of Mapping is required at all. After all,
why not simply write your own coordinate transformation functions in C, wrap them up in
IntraMaps and do away with all the other Mapping classes in AST?

The reason is not too hard to find. Any transformation function you write is created solely by
you, so it is a private extension which does not form a permanent part of AST. If you use it to
calibrate some data and then pass that data to someone else, who has only the standard version
of AST, then they will not be able to interpret it.

Thus, while an IntraMap is fine for use by you and your collaborators (who we assume have
access to the same transformation functions), it does not address the need for universal data
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exchange like other AST Mappings do. This is where the “Intra” in the class name “IntraMap”
comes from, implying private or internal usage.

For this reason, it is unwise to store IntraMaps in datasets, unless they will be used solely for
communication between collaborating items of software which share conventions about their use.
A private database describing coordinate systems on a graphics device might be an example
where IntraMaps would be suitable, because the data would probably never be accessed by
anyone else’s software. Restricting IntraMap usage to within a single program (i.e. never
writing it out) is, of course, completely safe.

If, by accident, an IntraMap should happen to escape as part of a dataset, then the unsuspecting
recipient is likely to receive an error message when they attempt to read the data. However, AST
will associate details of the IntraMap’s transformation function and its author (if provided) with
the data, so that the recipient can make an intelligent enquiry to obtain the necessary software
if this proves essential.

20.4 Writing a Transformation Function

The first stage in creating an IntraMap is to write the coordinate transformation function. This
should have a calling interface like the astTranP function provided by AST (g.v.). Here is a
simple example of a suitable transformation function which transforms coordinates by squaring
them:

#include "ast.h"
#include <math.h>

void SqrTran( AstMapping *this, int npoint, int ncoord_in,
const double *ptr_in[], int forward, int ncoord_out,
double *ptr_out[] ) {
int point, coord;
double x;

/* Forward transformation. */
if ( forward ) {
for ( point = 0; point < npoint; point++ ) {
for ( coord = 0; coord < ncoord_in; coord++ ) {
x = ptr_in[ coord ][ point ];
ptr_out[ coord ][ point ] = ( x == AST__BAD ) 7 AST__BAD : x * Xx;
}
}

/* Inverse transformation. */
} else {
for ( point = 0; point < npoint; point++ ) {
for ( coord = 0; coord < ncoord_in; coord++ ) {
x = ptr_in[ coord ][ point ];
ptr_out[ coord ][ point ] =
(x<0.0 ||l x==AST__BAD ) 7 AST__BAD : sqrt( x );
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As you can see, the function comes in two halves which implement the forward and inverse co-
ordinate transformations. The number of points to be transformed (“npoint”) and the numbers
of input and output coordinates per point (“ncoord_in” and “ncoord_out”—in this case both
are assumed equal) are passed to the function. A pair of loops then accesses all the coordinate
values. Note that it is legitimate to omit one or other of the forward/inverse transformations
and simply not to implement it, if it will not be required. It is also permissible to require that
the numbers of input and output coordinates be fixed (e.g. at 2), or to write the function so
that it can handle arbitrary dimensionality, as here.

Before using an incoming coordinate, the function must first check that it is not set to the value
AST__BAD, which indicates missing data (§5.8). If it is, the same value is also assigned to any
affected output coordinates. The value AST__BAD is also generated if any coordinates cannot
be transformed. In this example, this can happen with the inverse transformation if negative
values are encountered, so that the square root cannot be taken.

There are very few restrictions on what a coordinate transformation function may do. For ex-
ample, it may freely perform I/O to access any external data needed, it may invoke other AST
facilities (but beware of unwanted recursion), etc. Typically, you may also want to pass informa-
tion to it wvia global variables. Remember, however, that whatever facilities the transformation
function requires must be available in every program which uses it.

Generally, it is not a good idea to retain context information within a transformation function.
That is, it should transform each set of coordinates as a single point and retain no memory
of the points it has transformed before. This is in order to conform with the AST model of a
Mapping.

If an error occurs within a transformation function, it should use the astSetStatus function
(84.15) to set the AST status to an error value before returning. This will alert AST to the
error, causing it to abort the current operation. The error value AST__ITFER is available for
this purpose, but other values may also be used (e.g. if you wish to distinguish different types
of error).

20.5 Registering a Transformation Function

Having written your coordinate transformation function, the next step is to register it with AST.
Registration is performed using astIntraReg, as follows:

void SqrTran( AstMapping *, int, int, const double *[], int, int, double *[] );

const char *author, *contact, *purpose;

purpose = "Square each coordinate value";
author = "R.F. Warren-Smith & D.S. Berry";
contact = "http://www.starlink.ac.uk/cgi-bin/htxserver/sun211.htx/?xref_SqrTran";

astIntraReg( "SqrTran", 2, 2, SqrTran, O, purpose, author, contact );

Note that you should also provide a function prototype to describe the transformation function
(the implementation of the function itself would suffice, of course).
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The first argument to astIntraReg is a name by which the transformation function will be known.
This will be used when we come to create an IntraMap and is case sensitive. We recommend
that you use the actual function name here and make this sufficiently unusual that it is unlikely
to clash with any other functions in most people’s software.

The next two arguments specify the number of input and output coordinates which the trans-
formation function will handle. These correspond with the Nin and Nout attributes of the
IntraMap we will create. Here, we have set them both to 2, which means that we will only
be able to create IntraMaps with 2 input and 2 output coordinates (despite the fact that the
transformation function can actually handle other dimensionalities). We will see later (§20.8)
how to remove this restriction.

The fourth argument should contain a set of flags which describe the transformation function
in a little more detail. We will return to this shortly (§20.7 & §20.10). For now, we supply a
value of zero.

The remaining arguments are character strings which document the transformation function,
mainly for the benefit of anyone who is unfortunate enough to encounter a reference to it in
their data which they cannot interpret. As explained above (§20.3), you should try and avoid
this, but accidents will happen, so you should always provide strings containing the following:

1. A short description of what the transformation function is for.

2. The name of the author.

3. Contact details, such as an e-mail or WWW address.
The idea is that anyone finding an IntraMap in their data, but lacking the necessary transfor-
mation function, should be able to contact the author and make a sensible enquiry in order to
obtain it. If you expect many enquiries, you may like to set up a World Wide Web page and

use that instead (in the example above, we use the WWW address of the relevant part of this
document).

20.6 Creating an IntraMap

Once a transformation function has been registered, creating an IntraMap from it is simple:

AstIntraMap *intramap;

intramap = astIntraMap( "SqrTran", 2, 2, "" );

We simply use the astIntraMap constructor function and pass it the name of the transformation
function to use. This name is the same (case sensitive) one that we associated with the function
when we registered it using astIntraReg (§20.5).

You can, of course, register any number of transformation functions and select which one to use
whenever you create an IntraMap. You can also create any number of independent IntraMaps
using each transformation function. In this sense, each transformation function you register
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effectively creates a new “sub-class” of IntraMap, from which you can create Objects just like
any other class. However, an error will occur if you attempt to use a transformation function
that has not yet been registered.

The second and third arguments to astIntraMap are the numbers of input and output coordi-
nates. These define the Nin and Nout attributes for the IntraMap that is created and they must
match the corresponding numbers given when the transformation function was registered.

The final argument is the usual attribute initialisation string. You may set attribute values for
an IntraMap in exactly the same way as for any other Mapping (§4.6, and also see §20.9).

20.7 Restricted Implementations of Transformation Functions

You may not always want to use both the forward and inverse transformations when you create
an IntraMap, so it is possible to omit either from the underlying coordinate transformation
function. Consider the following, for example:

void Poly3Tran( AstMapping *this, int npoint, int ncoord_in,
const double *ptr_in[], int forward, int ncoord_out,
double *ptr_out[] ) {
double x;
int point;

/* Forward transformation. */
for ( point = 0; point < npoint; point++ ) {
x = ptr_in[ 0 ][ point ];
ptr_out[ O J[ point ] = ( x == AST__BAD ) 7 AST__BAD :
6.18 + x * ( 0.12 + x * ( -0.003 + x * 0.0000101 ) );

This implements a 1-dimensional cubic polynomial transformation. Since this is somewhat
awkward to invert, however, we have only implemented the forward transformation. When
registering the function, this is indicated via the “flags” argument to astIntraReg, as follows:

void Poly3Tran( AstMapping *, int, int, const double *[], int, int, double *[] );

astIntraReg( "Poly3Tran", 1, 1, Poly3Tran, AST__NOINV,
purpose, author, contact );

Here, the fifth argument has been set to the flag value AST__NOINV to indicate the lack of an
inverse. If the forward transformation were absent, we would use AST__NOFOR instead. Flag
values for this argument may be combined using a bitwise OR if necessary.

20.8 Variable Numbers of Coordinates

In our earlier examples, we have used a fixed number of input and output coordinates when
registering a coordinate transformation function. It is not necessary to impose this restriction,
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however, if the transformation function can cope with a variable number of coordinates (as with
the example in §20.4). We indicate the acceptability of a variable number when registering the
transformation function by supplying the value AST__ANY for the number of input and/or
output coordinates, as follows:

astIntraReg( "SqrTran", AST__ANY, AST__ANY, SqrTran, O,
purpose, author, contact )

The result is that an IntraMap may now be created with any number of input and output
coordinates. For example:

AstIntraMap *intramapl, *intramap2;

intramapl astIntraMap( "SqrTran", 1, 1, "" );
intramap2 = astIntraMap( "SqrTran", 3, 3, "Invert=1" );

It is possible to fix either the number of input or output coordinates (by supplying an explicit
number to astIntraReg), but more subtle restrictions on the number of coordinates, such as
requiring that Nin and Nout be equal, are not supported. This means that:

intramap = astIntraMap( "SqrTran", 1, 2, "" );

will be accepted without error, although the transformation function cannot actually handle
such a combination sensibly. If this is important, it would be worth adding a check within the
transformation function itself, so that the error would be detected when it came to be used.

20.9 Adapting a Transformation Function to Individual IntraMaps

In the examples given so far, our coordinate transformation functions have not made use of
the “this” pointer passed to them (which identifies the IntraMap whose transformation we are
implementing). In practice, this will often be the case. However, the presence of the “this”
pointer allows the transformation function to invoke any other AST function on the IntraMap,
and this permits enquiries about its attributes. The transformation function’s behaviour can
therefore be modified according to any attribute values which are set. This turns out to be a
useful thing to do, so each IntraMap has a special IntraFlag attribute reserved for exactly this
purpose.

Consider, for instance, the case where the transformation function has access to several alter-
native sets of internally-stored data which it may apply to perform its transformation. Rather
than implement many different versions of the transformation function, you may switch between
them by setting a value for the IntraFlag attribute when you create an instance of an IntraMap,
for example:

intramapl = astIntraMap( "MyTran", 2, 2, "IntraFlag=A" );
intramap2 astIntraMap( "MyTran", 2, 2, "IntraFlag=B" );
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The transformation function may then enquire the value of the IntraFlag attribute (e.g. us-
ing astGetC and passing it the “this” pointer) and use whichever dataset is required for that
particular IntraMap.

This approach is particularly useful when the number of possible transformations is unbounded
or not known in advance, in which case the IntraFlag attribute may be used to hold numerical
values encoded as part of a character string (effectively using them as data for the IntraMap).
It is also superior to the use of a global switch for communication (e.g. setting an index to
select the “current” data before using the IntraMap), because it continues to work when several
IntraMaps are embedded within a more complex compound Mapping, when you may have no
control over the order in which they are used.

20.10 Simplifying IntraMaps

A notable disadvantage of IntraMaps is that they are “black boxes” as far as AST is concerned.
This means that they have limited ability to participate in the simplification of compound
Mappings performed, e.g., by astSimplify (§6.7), because AST cannot know how they interact
with other Mappings. In reality, of course, they will often implement such specialised coordinate
transformations that the simplification possibilities will be rather limited anyway.

One important simplification, however, is the ability of a Mapping to cancel with its own inverse
to yield a unit Mapping (a UnitMap). This is important because Mappings are frequently used
to relate a dataset to some external standard (a celestial coordinate system, for example). When
inter-relating two similar datasets calibrated using the same standard, part of the Mapping often
cancels, because it is applied first in one direction and then the other, effectively eliminating the
reference to the standard. This is often a useful simplification and can lead to greater efficiency.

Many transformations have this property of cancelling with their own inverse, but not necessarily
all. Consider the following transformation function, for example:

void MaxTran( AstMapping *this, int npoint, int ncoord_in,
const double *ptr_in[], int forward, int ncoord_out,
double *ptr_out[] ) {
double hi, x;
int coord, point;

/* Forward transformation. */
if ( forward ) {
for ( point = 0; point < npoint; point++ ) {
hi = AST__BAD;
for ( coord = 0; coord < ncoord_in; coord++ ) {
x = ptr_in[ coord ][ point ];
if ( x !'= AST__BAD ) {
if ( x > hi || hi == AST__BAD ) hi = x;
}
}
ptr_out[ O ][ point ] = hi;
}

/* Inverse transformation. */
} else {
for ( coord = 0; coord < ncoord_out; coord++ ) {
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for ( point = 0; point < npoint; point++ ) {
ptr_out[ coord ][ point ] = ptr_in[ O ][ point 1;
}

This function takes any number of input coordinates and returns a single output coordinate
which is the maximum value of the input coordinates. Its inverse (actually a “pseudo-inverse”)
sets all the input coordinates to the value of the output coordinate.3?

If this function is applied in the forward direction and then in the inverse direction, it does not
in general restore the original coordinate values. However, if applied in the inverse direction
and then the forward direction, it does. Hence, replacing the sequence of operations with an
equivalent UnitMap is possible in the latter case, but not in the former.

To distinguish these possibilities, two flag values are provided for use with astIntraReg to indicate
what simplification (if any) is possible. For example, to register the above transformation
function, we might use:

void MaxTran( AstMapping *, int, int, const double *[], int, int, double *[] );

astIntraReg( "MaxTran", AST__ANY, 1, MaxTran, AST__SIMPIF,
purpose, author, contact );

Here, the flag value AST__SIMPIF supplied for the fifth argument indicates that simplification
is possible if the transformation is applied in the inverse direction followed by the forward
direction. To indicate the complementary case, the flag AST__SIMPFI would be used instead.
If both simplifications are possible (as with the SqrTran function in §20.4), then we would use
the bitwise OR of both values.

In practice, some judgement is usually necessary when deciding whether to allow simplification.
For example, seen in one light our SqrTran function (§20.4) does not cancel with its own inverse,
because squaring a coordinate value and then taking its square root can change the original
value, if this was negative. Therefore, replacing this combination with a UnitMap will change
the behaviour of a compound Mapping and should not be allowed. Seen in another light,
however, where the coordinates being processed are intrinsically all positive, it is a permissible
and probably useful simplification.

If such distinctions are ever important in practice, it is simple to register the same transformation
function twice with different flag values (use a separate name for each) and then use whichever
is appropriate when creating an IntraMap.

20.11 Writing and Reading IntraMaps

It is most important to realise that when you write an IntraMap to a Channel (§15.3), the
transformation function which it uses is not stored with it. To do so is impossible, because the

32Remember that “ptr_in” identifies the original “output” coordinates when applying the inverse transformation
and “ptr_out” identifies the original “input” coordinates.
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function has been compiled and loaded into memory ready for execution before AST gets to see
it. However, AST does store the name associated with the transformation function and various
details about the IntraMap itself.

This means that any program attempting to read the IntraMap (§15.4) cannot make use of it
unless it also has independent access to the original transformation function. If it does not have
access to this function, an error will occur at the point where the IntraMap is read and the
associated error message will direct the user to the author of the transformation function for
more information.

However, if the necessary transformation function is available, and has been registered before
the read operation takes place, then AST is able to re-create the original IntraMap and will do
so. Registration of the transformation function must, of course, use the same name (and, in
fact, be identical in most particulars) as was used in the original program which wrote the data.

This means that a set of co-operating programs which all have access to the same set of trans-
formation functions and register them in identical fashion (see §20.12 for how this can best be
achieved) can freely exchange data that contain IntraMaps. The need to avoid exporting such
data to unsuspecting third parties (§20.3) must, however, be re-iterated.

20.12 Managing Transformation Functions in Libraries

If you are developing a large suite of data reduction software, you may have a need to use
IntraMaps at various points within it. Very probably this will occur in unrelated modules which
are compiled separately and then stored in a library. Since the transformation functions required
must be registered before they can be used, this makes it difficult to decide where to perform
this registration, especially since any particular data reduction program may use an arbitrary
subset of the modules in your library.

To assist with this problem, AST allows you to perform the same registration of a transforma-
tion function any number of times, so long as it is performed using an identical invocation of
astIntraReg on each occasion (i.e. all of its arguments must be identical). This means you do
not have to keep track of whether a particular function has already been registered but could,
in fact, register it on each occasion immediately before it is required (wherever that may be).
In order that all registrations are identical, however, it is recommended that you group them all
together into a single function, perhaps as follows:

void MyTrans( void ) {

astIntraReg( "MaxTran", AST__ANY, 1, MaxTran, AST__SIMPIF,
purpose, author, contact )

astIntraReg( "Poly3Tran", 1, 1, Poly3Tran, AST__NOINV,
purpose, author, contact )
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astIntraReg( "SqrTran", 2, 2, SqrTran, O,
purpose, author, contact )

You can then simply invoke this function wherever necessary. It is, in fact, particularly important
to register all relevant transformation functions in this way before you attempt to read an Object
that might be (or contain) an IntraMap (§20.11). This is because you may not know in advance
which of these transformation functions the IntraMap will use, so they must all be available in
order to avoid an error.
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21 Producing Graphical Output (Plots)

Graphical output from AST is performed though an Object called a Plot, which is a specialised
form of FrameSet. A Plot does not represent the graphical content itself, but is a route through
which plotting operations, such as drawing lines and curves, are conveyed on to a plotting surface
to appear as visible graphics.

21.1 The Plot Model

When a Plot is created, it is initialised by providing a FrameSet whose base Frame (as specified by
its Base attribute) is mapped linearly or logarithmically (as specified by the LogPlot attribues)
on to a plotting area. This is a rectangular region in the graphical coordinate space of the
underlying graphics system and becomes the new base Frame of the Plot. In effect, the Plot
becomes attached to the plotting surface, in rather the same way that a basic FrameSet might
be attached to (say) an image.

The current Frame of the Plot (derived from the current Frame of the FrameSet supplied) is used
to represent a physical coordinate system. This is the system in which plotting operations are
performed by your program. Every plotting operation is then transformed through the Mapping
which inter-relates the Plot’s current and base Frames in order to appear on the plotting surface.

An example may help here. Suppose we start with a FrameSet whose base Frame describes
the pixel coordinates of an image and whose current Frame describes a celestial (equatorial)
coordinate system. Let us assume that these two Frames are inter-related by a Mapping within
the FrameSet which represents a particular sky projection.

When a Plot is created from this FrameSet, we specify how the pixel coordinates (the base
Frame) maps on to the plotting surface. This simply corresponds to telling the Plot where we
have previously plotted the image data. If we now use the Plot to plot a line with latitude zero
in our physical coordinate system, as given by the current Frame, this line would appear as a
curve (the equator) on the plotting surface, correctly registered with the image.

There are a number of plotting functions provided, which all work in a similar way. Plotting
operations are transformed through the Mapping which the Plot represents before they appear
on the plotting surface.?? It is possible to draw symbols, lines, axes, entire grids and more in
this way.

21.2 Plotting Symbols

The simplest form of plotting is to draw symbols (termed markers) at a set of points. This is
performed by astMark, which is supplied with a set of physical coordinates at which to place
the markers:

#include "ast.h"
#define NCOORD 2
#define NMARK 10
double in[ NCOORD ][ NMARK 1];

33Like any FrameSet, a Plot can be used as a Mapping. In this case it is the inverse transformation which is
used when plotting (i.e. that which transforms between the current and base Frames).
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int type;

astMark( plot, NMARK, NCOORD, NMARK, in, type );

Here, NMARK specifies how many markers to plot and NCOORD specifies how many coor-
dinates are being supplied for each point.>* The array “in” supplies the coordinates and the
integer “type” specifies which type of marker to plot.

21.3 Plotting Geodesic Curves

There is no Plot routine to draw a straight line, because any straight line in physical coordinates
can potentially turn into a curve in graphical coordinates. We therefore start by considering
how to draw geodesic curves. These are curves which trace the path of shortest distance between
two points in physical coordinates and are the basic drawing element in a Plot.

In many instances, the geodesic will, in fact, be a straight line, but this depends on the Plot’s
current Frame. If this represents a celestial coordinate system, for instance, it will be a great
circle (corresponding with the behaviour of the astDistance function which defines the metric
of the physical coordinate space). The geodesic will, of course, be transformed into graphics
coordinates before being plotted. A geodesic curve is plotted using astCurve as follows:

double start[ NCOORD ], finish[ NCOORD ];

astCurve( plot, start, finish );

Here, “start” and “finish” are arrays containing the starting and finishing coordinates of the
curve. The astOffset and astDistance functions can often be useful for computing these (§7.11).

If you need to draw a series of curves end-to-end (when drawing a contour line, for example),
then a more efficient alternative is to use astPolyCurve. This has the same effect as a sequence of
invocations of astCurve, but allows you to supply a whole set of points at one time. astPolyCurve
then joins them, in sequence, using geodesic curves:

#define NPOINT 100
double coords[ NCOORD ][ NPOINT ];

astPolyCurve( plot, NPOINT, NCOORD, NPOINT, coords );

Here, NPOINT specifies how many points are to be joined and NCOORD specifies how many
coordinates are being supplied for each point. The array “coords” supplies the coordinates of
the points in the Plot’s physical coordinate system.

34Remember, the physical coordinate space need not necessarily be 2-dimensional, even if the plotting surface
is.
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21.4 Plotting Curves Parallel to Axes

As there is no Plot function to draw a “straight line”, drawing axes and grid lines to represent
coordinate systems requires a slightly different approach. The problem is that for some coordi-
nate systems, these grid lines will not be geodesics, so astCurve and astPolyCurve (§21.3) cannot
easily be used (you would have to resort to approximating grid lines by many small elements).
Lines of constant celestial latitude provide an example of this, with the exception of the equator
which is a geodesic.

The astGridLine function allows these curves to be drawn, as follows:

int axis;
double length;

astGridLine( plot, axis, start, length );

Here, “axis” specifies which physical coordinate axis we wish to draw parallel to. The “start”
array contains the coordinates of the start of the curve and “length” specifies the distance to
draw along the axis in physical coordinate space.

21.5 Plotting Generalized Curves

We have seen how geodesic curves and grid lines can be drawn. The Plot class includes another
method, astGenCurve, which allows curves of any form to be drawn. The caller supplies a
Mapping which maps offset along the curve® into the corresponding position in the current
Frame of the Plot. astGenCurve, then takes care of Mapping these positions into graphics
coordinates. The choice of exactly which positions along the curve are to be used to define
the curve is also made by astGenCurve, using an adaptive algorithm which concentrates points
around areas where the curve is bending sharply or is discontinuous in graphics coordinates.

The IntraMap class may be of particular use in this context since it allows you to code your own
Mappings to do any transformation you choose.

21.6 Clipping

Like many graphics systems, a Plot allows you to clip the graphics you produce. This means that
plotting is restricted to certain regions of the plotting surface so that anything drawn outside
these regions will not appear. All Plots automatically clip at the edges of the plotting area
specified when the Plot is created. This means that graphics are ultimately restricted to the
rectangular region of plotting space to which you have attached the Plot.

In addition to this, you may also specify lower and upper limits on each axis at which clipping
should occur. This permits you to further restrict the plotting region. Moreover, you may attach
these clipping limits to any of the Frames in the Plot. This allows you to place restrictions on

35normalized so that the start of the curve is at offset 0.0 and the end of the curve is at offset 1.0 - offset need

not be linearly related to distance.
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where plotting will take place in either the physical coordinate system, the graphical coordinate
system, or in any other coordinate system which is described by a Frame within the Plot.

For example, you could plot using equatorial coordinates and set up clipping limits in galactic
coordinates. In general, you could set up arbitrary clipping regions by adding a new Frame to
a Plot (in which clipping will be performed) and inter-relating this to the other Frames in a
suitable way.

Clipping limits are defined using the astClip function, as follows:

#define NAXES 2
int iframe;
double 1bnd[ NAXES ], ubnd[ NAXES ];

astClip( plot, iframe, lbnd, ubnd);

Here, the “iframe” value gives the index of the Frame within the Plot to which clipping is to be
applied, while “lbnd” and “ubnd” give the limits on each axis of the selected Frame (NAXES is
the number of axes in this Frame).

You can remove clipping by giving a value of AST__NOFRAME for “iframe”.

21.7 Using a Plot as a Mapping

All Plots are also Mappings (just like the FrameSets from which they are derived), so can be
used to transform coordinates.

Like FrameSets, the forward transformation of a Plot will convert coordinates between the base
and current Frames (i.e. between graphical and physical coordinates). This would be useful if
you were (say) reading a cursor position in graphical coordinates and needed to convert this into
physical coordinates for display.

Conversely, a Plot’s inverse transformation converts between its current and base Frames (i.e.
from physical coordinates to graphical coordinates). This transformation is applied automat-
ically whenever plotting operations are carried out by AST functions. It may also be useful
to apply it directly, however, if you wish to perform additional plotting operations (e.g. those
provided by the native graphics system) at positions specified in physical coordinates.

There is, however, one important difference between using a FrameSet and a Plot to transform
coordinates, and this is that clipping may be applied by a Plot (if it has been enabled using
astClip—§21.6). Any point which lies within the clipped region of a Plot will, when transformed,
yield coordinates with the value AST__BAD. If you wish to avoid this clipping, you should
extract the relevant Mapping from the Plot (using astGetMapping) and use this, instead of the
Plot, to transform the coordinates.

21.8 Using a Plot as a Frame

Every Plot is also a Frame, so can be used to obtain the values of Frame attributes such as
a Title, axis Labels, axis Units, etc., which are typically used when displaying data and/or
coordinates. These attributes are, as for any FrameSet, derived from the current Frame of the
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Plot (§13.8). They are also used automatically when using the Plot to plot coordinate axes and
coordinate grids (e.g. for labelling them—§21.12).

Because the current Frame of a Plot represents physical coordinates, any Frame operation applied
to the Plot will effectively be working in this coordinate system. For example, the astDistance
and astOffset functions will compute distances and offsets in physical coordinate space, while
astFormat and astNorm will format physical coordinates in an appropriate way for display.

21.9 Regions of Valid Physical Coordinates

When points in physical coordinate space are transformed by a Plot into graphics coordinates for
plotting, they may not always yield valid coordinates, irrespective of any clipping being applied
(§21.6). To indicate this, the resulting coordinate values will be set to the value AST__BAD

(55.8).

There are a number of reasons why this may occur, but typically it will be because physical
coordinates only map on to a subset of the graphics coordinate space. This situation is commonly
encountered with all-sky projections where, typically, the celestial sphere appears, when plotted,
as a distorted shape (e.g. an ellipse) which does not entirely fill the graphics space. In some
cases, there may even be multiple regions of valid and invalid physical coordinates.

When plotting is performed wvia a Plot, graphical output will only appear in the regions of
valid physical coordinates. Nothing will appear where invalid coordinates occur. Such output is
effectively clipped. If you wish to plot in these areas, you must change coordinate system and
use, say, graphical coordinates to address the plotting surface directly.

21.10 Plotting Borders

The astBorder function is provided to draw a (line) border around your graphical output. With
most graphics systems, this would simply be a rectangular box around the plotting area. With a
Plot, however, this boundary follows the edge of each region containing valid, unclipped physical
coordinates (§21.9).

This means, for example, that if you were plotting an all-sky projection, this boundary would
outline the perimeter of the celestial sphere when projected on to your plotting surface. Of
course, if there is no clipping and all physical coordinates are valid, then you will get the
traditional rectangular box. astBorder requires only a pointer to the Plot:

int holes;

holes = astBorder( plot );

It returns a boolean (integer) value to indicate if any invalid or clipped physical coordinates were
found within the plotting area. If they were, it will draw around the valid unclipped regions and
return a value of one. Otherwise, it will draw a simple rectangular border and return zero.
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21.11 Plotting Text

Using a Plot to draw text involves supplying a string of text to be displayed and a position in
physical coordinates where the text is to appear. The position is transformed into graphical
coordinates to determine where the text should appear on the plotting surface. You must
also provide a 2-element “up” vector which gives the upward direction of the text in graphical
coordinates. This allows text to be drawn at any angle.

Plotting is performed by astText, for example:

char text[ 21 ];
double pos[ NCOORD ];
float upl[ 2 1 = { 0.0f, 1.0f };

astText( plot, text, pos, up, "TL" );

Here, “text” contains the string to be drawn, “pos” is an array of physical coordinates and “up”
specifies the upward vector. In this case, the text will be drawn horizontally. The final argument
specifies the text justification, here indicating that the top left corner of the text should appear
at the position given.

Further control over the appearance of the text is possible by setting values for various Plot
attributes, for example Colour, Font and Size. Sub-strings within the displayed text can be
given different appearances, or turned into super-scripts or sub-scripts, by the inclusion of escape
sequences (see section §21.13) within the supplied text string.

21.12 Plotting a Grid

The most comprehensive plotting function available is astGrid, which can be used to draw la-
belled coordinate axes and, optionally, to overlay coordinate grids on the plotting area (Figure 8).
The routine is straightforward to use, simply requiring a pointer to the Plot:

astGrid( plot );

It will draw both linear and curvilinear axes and grids, as required by the particular Plot. The
appearance of the output can be modified in a wide variety of ways by setting various Plot
attributes. The Label attributes of the current Frame are displayed as the axis labels in the
grid, and the Title attribute as the plot title. Sub-strings within these strings can be given
different appearances, or turned into super-scripts or sub-scripts, by the inclusion of escape
sequences (see section §21.13) within the Label attributes.

21.13 Controlling the Appearance of Sub-strings

Normally, each string of characters displayed using a Plot will be plotted so that all characters
in the string have the same font size, colour, etc., specified by the appropriate attributes of
the Plot. However, it is possible to include escape sequences within the text to modify the
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appearance of sub-strings. Escape sequences can be used to change, colour, font, size, width, to
introduce extra horizontal space between characters, and to change the base line of characters
(thus allowing super-scripts and sub-scripts to be created). See the entry for the Escape attribute
in Appendix C for details.

As an example, if the character string “10\%~50%s70+0.5+" is plotted, it will be displayed as
“100-5” - that is, with a super-scripted exponent. The exponent text will be 70% of the size of
normal text (as determined by the Size attribute), and its baseline will be raised by 50% of the
height of a normal character.

Such escape sequences can be used in the strings assigned to textual attributes of the Plot (such
as the axis Labels), and may also be included in strings plotted using astText.

The Format attribute for the SkyAxis class includes the “g” option which will cause escape
sequences to be included when formatting celestial positions so that super-script characters are
used as delimiters for the various fields (a super-script “h” for hours, “m” for minutes, etc).

Note, the facility for interpreting escape sequences is only available if the graphics wrapper
functions which provide the interface to the underlying graphics system support all the functions
included in the grf.h file as of AST V3.2. Older grf interfaces may need to be extended by the
addition of new functions before escape sequences can be interpretted.

21.14 Producing Logarithmic Axes

In certain situations you may wish for one or both of the plotted axes to be displayed logarithmi-
cally rather than linearly. For instance, you may wish to do this when using a Plot to represent
a spectrum of, say, flux against frequency. In this case, you can cause the frequency axis to be
drawn logarithmically simply by setting the boolean LogPlot attribute for the frequency axis to
a non-zero value. This causes several things to happen:

1. The Mapping between the base Frame of the Plot (which represents the underlying graphics
world coordinate system) and the base Frame of the FrameSet supplied when the Plot was
created, is modified. By default, this mapping is linear on both axes, but setting LogPlot
non-zero for an axis causes the Mapping to be modified so that it is logarithmic on the
specified axis. This is only possible if the displayed section of the axis does not include the
value zero (otherwise the attempt to set a new value for LogPlot is ignored,and it retains
its default value of zero).

2. The major tick marks drawn as part of the annotated coordinate grid are spaced loga-
rithmically rather than linearly. That is, major axis values are chosen so that there is a
constant ratio between adjacent tick mark values. This ratio is constrained to be a power
of ten. The minor tick marks are drawn at linearly distributed points between the adjoin-
ing major tick values. Thus if a pair of adjacent major tick values are drawn at axis values
10.0 and 100.0, minor ticks will be placed at 20.0, 30.0, 40.0, 50.0, 60.0, 70.0, 80.0 and
90.0 (note only 8 minor tick marks are drawn).

3. If possible, numerical axis labels are shown as powers of ten. This depends on the facilities
implemented by the graphics wrapper functions (see the next section). Extra functions
were introduced to this set of wrapper functions at AST V3.2 which enable super-scripts
and sub-scripts to be produced. Some older wrappers may not yet have implemented
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these functiosn and this will result in axis labels being drawn in usual scientific or decimal
notation.

Whilst the LogPlot attribute can be used to control all three of the above facilities, it is pos-
sible to control them individually as well. The LogTicks and LogLabel attributes control the
behaviour specified in items 2 and 3 above, but the default values for these attributes depend
on the setting of the LogPlot attribute. This means that setting LogPlot non-zero will swicth
all three facilites on, so long as zero values have not been assigned explicitly to LogTicks or
LogLabel.

21.15 Choosing a Graphics Package

The Plot class itself does not include any code for actually drawing on a graphics device. In-
stead, it requires a set of functions to be provided which it uses to draw the required graphics.
These include functions to draw a straight line, draw a text string, etc. You may choose to
provide functions from your favorite graphics package, or you can even write your own! To
accomodate variations in the calling interfaces of different graphics packages, AST defines a
standard interface for these routines. If this interface differs from the interface provided by
your graphics package (which in general it will), then you must write a set of wrapper functions,
which provide the interface expected by AST but which then call functions from your graphics
package to provide the required functionality. AST comes with wrapper functions suitable for
the PGPLOT graphics package (see SUN/15).

There are two ways of indicating which wrapper functions are to be used by the Plot class:

1. A file containing C functions with pre-defined names can be written and linked with the
application using options of the ast_link command. (see §3.3 and Appendix E). AST
is distributed with such a file (called grf_pgplot.c) which calls PGPLOT functions to
implement the required functionality. This file can be used as a template for writing your
own.

2. The astGrfSet method of the Plot class can be used to “register” wrapper functions at run-
time. This allows an application to switch between graphics systems if required. Graphics
functions registered in this way do not need to have the pre-defined names used in the
link-time method described above.

For details of the interfaces of the wrapper routines, see either the grf_pgplot.c file included
in the AST source distribution, or the reference documentation for the astGrfSet method.
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22 Compiling and Linking Software that Uses AST

A small number of UNIX commands are provided by AST to assist with the process of building
software. A description of these can be found in Appendix E and their use is discussed here.
Note that in order to access these commands, the appropriate directory (normally “/star/bin”)
should be on your PATH.36

22.1 Accessing the “ast.h” Header File

The “ast.h” header file defines the external interface to the AST library, including all constants,
function prototypes, macros, etc.. This file should be located using the usual compiler options
for finding C include files, for instance:

cc prog.c -I/star/include -o prog

This is preferable to specifying the file’s absolute name within your software.

22.2 Linking with AST Facilities

C programs which use AST facilities may be linked by including execution of the command
“ast_link” on the compiler command line. Thus, to compile and link a program called “prog”,
the following might be used:

cc prog.c -L/star/lib ‘ast_link‘ -o prog

Note the use of backward quote characters, which cause the “ast_link” command to be executed
and its result substituted into the compiler command. An alternative is to save the output from
“ast_link” in (say) a shell variable and use this instead. You may find this a little faster if you
are building software repeatedly during development.

Programs which use AST can also be linked in a number of other ways, depending on the
facilities they require. In the example above, we have used the default method which assumes
that the program will not be generating graphical output, so that no graphics libraries need
be linked. If you need other facilities, then various switches can be applied to the “ast_link”
command in order to control the linking process.

For example, if you were producing graphical output using the PGPLOT graphics package, you

could link with the AST/PGPLOT interface by using the “—pgplot” switch with “ast_link”, as

follows:37

cc prog.c -L/star/lib ‘ast_link -pgplot¢ -o prog

See the “ast_link” command description in Appendix E for details of the options available.

36Tf you have not installed AST in the usual location, then substitute the appropriate directory in place of
“/star” wherever it occurs.

37Use the “—pgp” option instead if you wish to use the Starlink version of PGPLOT which uses GKS to generate
its output.
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22.3 Building ADAM Applications that Use AST

Users of Starlink’s ADAM programming environment (SG/4) on UNIX should use the “alink”
command (SUN/144) to compile and link applications and can access the AST library by in-
cluding execution of the command “ast_link_adam” on the command line, as follows:

alink adamprog.c ‘ast_link_adam®

Note the use of backward quote characters.

By default, AST error messages produced by applications built in this way will be delivered wvia
the Starlink EMS Error Message Service (SSN/4) so that error handling by AST is consistent
with the inherited status error handling normally used in Starlink software.

Switches may be given to the “ast_link_adam” command (in a similar way to “ast_link”—
§22.2) in order to link with additional AST-related facilities, such as a graphics interface. See
the “ast_link_adam” command description in Appendix E for details of the options available.
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A The AST Class Hierarchy

The following table shows the hierarchy of classes in the AST library. For a description of each
class, you should consult Appendix D.

Object - Base class for all AST Objects
Axis - Store axis information
SkyAxis - Store celestial axis information
Channel - Basic (textual) I/0 channel
FitsChan - I/0 Channel using FITS header cards
XmlChan - I/0 Channel using XML
StcsChan - I/0 Channel using IVOA STC-S descriptions
KeyMap - Store a set of key/value pairs
Table - Store a 2-dimensional table of values
Mapping - Inter-relate two coordinate systems
CmpMap - Compound Mapping
DssMap - Map points using Digitised Sky Survey plate solution
Frame - Coordinate system description
CmpFrame - Compound Frame

SpecFluxFrame - Observed value versus spectral position
FluxFrame - Observed value at a given fixed spectral position

FrameSet - Set of inter-related coordinate systems
Plot - Provide facilities for 2D graphical output
Plot3D - Provide facilities for 3D graphical output
Region - Specify areas within a coordinate system
Box - A box region with sides parallel to the axes of a Frame
Circle - A circular or spherical region within a Frame
CmpRegion - A combination of two regions within a single Frame
Ellipse - An elliptical region within a 2-dimensional Frame
Interval - Intervals on one or more axes of a Frame.
NullRegion - A boundless region within a Frame
PointList - A collection of points in a Frame
Polygon - A polygonal region within a 2-dimensional Frame
Prism - An extrusion of a Region into orthogonal dimensions
Stc - Represents an generic instance of an IVOA STC-X description
StcResourceProfile - Represents an an IVOA STC-X ResourceProfile
StcSearchlLocation - Represents an an IVOA STC-X SearchlLocation

StcCatalogEntryLocation - Represents an an IVOA STC-X CatalogEntryLocation
StcObsDatalocation - Represents an an IVOA STC-X ObsDatalLocation
SkyFrame - Celestial coordinate system description
SpecFrame - Spectral coordinate system description
DSBSpecFrame - Dual sideband spectral coordinate system description
TimeFrame - Time coordinate system description

GrismMap - Models the spectral dispersion produced by a grism
IntraMap - Map points using a private transformation function
LutMap - Transform 1-dimensional coordinates using a lookup table
MathMap - Transform coordinates using mathematical expressions
MatrixMap - Map positions by multiplying them by a matrix

NormMap - Normalise coordinates using a supplied Frame

PcdMap - Apply 2-dimensional pincushion/barrel distortion
PermMap - Coordinate permutation Mapping

PolyMap - General N-dimensional polynomial Mapping

RateMap - Calculates an element of a Mapping’s Jacobian matrix
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SelectorMap
ShiftMap
SlaMap
SpecMap
SphMap
SwitchMap
TimeMap
TranMap
UnitMap
WcsMap
WinMap
ZoomMap

A THE AST CLASS HIERARCHY

Locates positions within a set of Regions
Shifts each axis by a constant amount

Sequence of celestial coordinate conversions
Sequence of spectral coordinate conversions

Map 3-d Cartesian to 2-d spherical coordinates
Encapuslates a set of alternate Mappings
Sequence of time coordinate conversions

Combine fwd. and inv. transformations from two Mappings
Unit (null) Mapping

Implement a FITS-WCS sky projection

Match windows by scaling and shifting each axis
Zoom coordinates about the origin
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B AST Function Descriptions

astSet Set attribute values for an Object astSet

Description: This function assigns a set of attribute values to an Object, over-riding any previous
values. The attributes and their new values are specified via a character string, which should
contain a comma-separated list of the form:

"attribute_1 = value_1, attribute_2 = value_2, ... "

where "attribute_n" specifies an attribute name, and the value to the right of each "=" sign should
be a suitable textual representation of the value to be assigned. This value will be interpreted
according to the attribute’s data type.

The string supplied may also contain "printf"-style format specifiers, identified by "%" signs in the
usual way. If present, these will be substituted by values supplied as additional optional arguments
(using the normal "printf" rules) before the string is used.

Synopsis: void astSet( AstObject xthis, const char xsettings, ... )

Parameters:
this
Pointer to the Object.
settings
Pointer to a null-terminated character string containing a comma-separated list of attribute
settings in the form described above.

Optional additional arguments which supply values to be substituted for any "printf"-style
format specifiers that appear in the "settings" string.
Class Applicability:
Object
This function applies to all Objects.
Examples:

astSet( map, "Report = 1, Zoom = 25.0" );
Sets the Report attribute for Object "map" to the value 1 and the Zoom attribute to 25.0.
astSet( frame, "Label( %d ) =0ffset along axis %d", axis, axis );
Sets the Label(axis) attribute for Object "frame" to a suitable string, where the axis number
is obtained from "axis", a variable of type int.
astSet( frame, "Title =¥s", mystring );
Sets the Title attribute for Object "frame" to the contents of the string "mystring".

Notes:

e Attribute names are not case sensitive and may be surrounded by white space.

e White space may also surround attribute values, where it will generally be ignored (except
for string-valued attributes where it is significant and forms part of the value to be assigned).

e To include a literal comma in the value assigned to an attribute, the whole attribute value
should be enclosed in quotation markes. Alternatively, you can use "%s" format and supply
the value as a separate additional argument to astSet (or use the astSetC function instead).

e The same procedure may be adopted if "%" signs are to be included and are not to be

interpreted as format specifiers (alternatively, the "printf" convention of writing "% %" may
be used).

e An error will result if an attempt is made to set a value for a read-only attribute.
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astAddColumn  Add a new (30111:11%{1 definition to astAddColumn
a table

Description: Adds the definition of a new column to the supplied table. Initially, the column is empty.
Values may be added subsequently using the methods of the KeyMap class.

Synopsis: void astAddColumn( AstTable *this, const char *name, int type, int ndim, int
*dims, const char xunit )

Parameters:

this
Pointer to the Table.

name
The column name. Trailing spaces are ignored (all other spaces are significant). The supplied
string is converted to upper case.

type
The data type associated with the column. See "Applicability:" below.

ndim
The number of dimensions spanned by the values stored in a single cell of the column. Zero
if the column holds scalar values.

dims
An array holding the the lengths of each of the axes spanned by the values stored in a single
cell of the column. Ignored if the column holds scalara values.

unit
A string specifying the units of the column. Supply a blank string if the column is unitless.

Class Applicability:

Table
Tables can hold columns with any of the following data types - AST__INTTYPE (for integer),
AST__SINTTYPE (for short int), AST__BYTETYPE (for unsigned bytes - i.e. unsigned
chars), AST__DOUBLETYPE (for double precision floating point), AST__FLOATTYPE
(for single precision floating point), AST__STRINGTYPE (for character string), AST__OBJECTTYPE
(for AST Object pointer), AST__POINTERTYPE (for arbitrary C pointer) or AST__UNDEFTYPE
(for undefined values created by astMapPutU).

FitsTable
FitsTables can hold columns with any of the following data types - AST__INTTYPE (for
integer), AST__SINTTYPE (for short int), AST__BYTETYPE (for unsigned bytes - i.e. un-
signed chars), AST__DOUBLETYPE (for double precision floating point), AST__FLOATTYPE
(for single precision floating point), AST__STRINGTYPE (for character string).

Notes:

e This function returns without action if a column already exists in the Table with the supplied
name and properties. However an error is reported if any of the properties differ.

astAddFrame Add a Frame to a FrameSet to astAddFrame
define a new coordinate system

Description: This function adds a new Frame and an associated Mapping to a FrameSet so as to define
a new coordinate system, derived from one which already exists within the FrameSet. The new
Frame then becomes the FrameSet’s current Frame.
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This function may also be used to merge two FrameSets, or to append extra axes to every Frame
in a FrameSet.

Synopsis: void astAddFrame( AstFrameSet *this, int iframe, AstMapping *map, AstFrame sframe

)
Parameters:

this
Pointer to the FrameSet.

iframe
The index of the Frame within the FrameSet which describes the coordinate system upon
which the new one is to be based. This value should lie in the range from 1 to the number
of Frames already in the FrameSet (as given by its Nframe attribute). As a special case,
AST__ALLFRAMES may be supplied, in which case the axes defined by the supplied Frame
are appended to every Frame in the FrameSet (see the Notes section for details).

map

Pointer to a Mapping which describes how to convert coordinates from the old coordinate
system (described by the Frame with index "iframe") into coordinates in the new system. The
Mapping’s forward transformation should perform this conversion, and its inverse transforma-
tion should convert in the opposite direction. The supplied Mapping is ignored if parameter
"iframe"is equal to AST__ALLFRAMES.

frame
Pointer to a Frame that describes the new coordinate system. Any class of Frame may be
supplied (including Regions and FrameSets).
This function may also be used to merge two FrameSets by supplying a pointer to a second
FrameSet for this parameter (see the Notes section for details).

Notes:

o A value of AST__BASE or AST__CURRENT may be given for the "iframe" parameter to
specify the base Frame or the current Frame respectively.

e This function sets the value of the Current attribute for the FrameSet so that the new Frame
subsequently becomes the current Frame.

e The number of input coordinate values accepted by the supplied Mapping (its Nin attribute)
must match the number of axes in the Frame identified by the "iframe" parameter. Similarly,
the number of output coordinate values generated by this Mapping (its Nout attribute) must
match the number of axes in the new Frame.

e As a special case, if a pointer to a FrameSet is given for the "frame" parameter, this is treated
as a request to merge a pair of FrameSets. This is done by appending all the new Frames (in
the "frame" FrameSet) to the original FrameSet, while preserving their order and retaining
all the inter-relationships (i.e. Mappings) between them. The two sets of Frames are inter-
related within the merged FrameSet by using the Mapping supplied. This should convert
between the Frame identified by the "iframe" parameter (in the original FrameSet) and the
current Frame of the "frame" FrameSet. This latter Frame becomes the current Frame in the
merged FrameSet.

e As another special case, if a value of AST__ALLFRAMES is supplied for parameter "iframe",
then the supplied Mapping is ignored, and the axes defined by the supplied Frame are ap-
pended to each Frame in the FrameSet. In detail, each Frame in the FrameSet is replaced by
a CmpFrame containing the original Frame and the Frame specified by parameter "frame".
In addition, each Mapping in the FrameSet is replaced by a CmpMap containing the original
Mapping and a UnitMap in parallel. The Nin and Nout attributes of the UnitMap are set
equal to the number of axes in the supplied Frame. Each new CmpMap is simplified using
astSimplify before being stored in the FrameSet.
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ast AddParameter Add a new global ast AddParameter
parameter definition to a
table

Description: Adds the definition of a new global parameter to the supplied table. Note, this does not
store a value for the parameter. To get or set the parameter value, the methods of the paremt
KeyMap class should be used, using the name of the parameter as the key.

Synopsis: void astAddParameter( AstTable xthis, const char *name )

Parameters:

this
Pointer to the Table.

name
The parameter name. Trailing spaces are ignored (all other spaces are significant). The
supplied string is converted to upper case.

Notes:

e Unlike columns, the definition of a parameter does not specify its type, size or dimensionality.

astAddVariant  Store a new variant Mapping for = astAddVariant
the current Frame in a FrameSet

Description: This function allows a new variant Mapping to be stored with the current Frame in a
FrameSet. See the "Variant" attribute for more details. It can also be used to rename the currently
selected variant Mapping.

Synopsis: void astAddVariant( AstFrameSet xthis, AstMapping *map, const char sname, int
*status )

Parameters:

this
Pointer to the FrameSet.

map
Pointer to a Mapping which describes how to convert coordinates from the current Frame to
the new variant of the current Frame. If NULL is supplied, then the name associated with
the currently selected variant of the current Frame is set to the value supplied for "name",
but no new variant is added.

name
The name to associate with the new variant Mapping (or the currently selected variant Map-
ping if "map" is NULL).

Notes:

e The newly added Variant becomes the current variant on exit (this is equivalent to setting
the Variant attribute to the value supplied for "name).

e An error is reported if a variant with the supplied name already exists in the current Frame.

e An error is reported if the current Frame is a mirror for the variant Mappings in another
Frame. This is only the case if the astMirrorVariants function has been called to make the
current Frame act as a mirror.
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astAngle Calculate the angle subtended by two points at astAngle
a third point

Description: This function finds the angle at point B between the line joining points A and B, and the
line joining points C and B. These lines will in fact be geodesic curves appropriate to the Frame
in use. For instance, in SkyFrame, they will be great circles.

Synopsis: double astAngle( AstFrame xthis, const double a[], const double b[], const double
cll)

Parameters:

this
Pointer to the Frame.

An array of double, with one element for each Frame axis (Naxes attribute) containing the
coordinates of the first point.

An array of double, with one element for each Frame axis (Naxes attribute) containing the
coordinates of the second point.

An array of double, with one element for each Frame axis (Naxes attribute) containing the
coordinates of the third point.

Returned Value:

ast Angle
The angle in radians, from the line AB to the line CB. If the Frame is 2-dimensional, it will
be in the range $\pm \pi$, and positive rotation is in the same sense as rotation from the
positive direction of axis 2 to the positive direction of axis 1. If the Frame has more than 2
axes, a positive value will always be returned in the range zero to $\pi$.

Notes:
e A value of AST__BAD will also be returned if points A and B are co-incident, or if points B
and C are co-incident.
o A value of AST__BAD will also be returned if this function is invoked with the AST error
status set, or if it should fail for any reason.
ast Annul Annul a pointer to an Object ast Annul

Description: This function annuls a pointer to an Object so that it is no longer recognised as a valid
pointer by the AST library. Any resources associated with the pointer are released and made
available for re-use.

This function also decrements the Object’s RefCount attribute by one. If this attribute reaches
zero (which happens when the last pointer to the Object is annulled), then the Object is deleted.

Synopsis: AstObject *astAnnul( AstObject xthis )

Parameters:

this
The Object pointer to be annulled.

Class Applicability:
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Object
This function applies to all Objects.
Returned Value:
astAnnul()
A null Object pointer (AST__NULL) is always returned.

Notes:

e This function will attempt to annul the pointer even if the Object is not currently locked by
the calling thread (see astLock).

e This function attempts to execute even if the AST error status is set on entry, although
no further error report will be made if it subsequently fails under these circumstances. In
particular, it will fail if the pointer suppled is not valid, but this will only be reported if the
error status is clear on entry.

astAxAngle Returns the angle from an axis, to a line astAxAngle
through two points

Description: This function finds the angle, as seen from point A, between the positive direction of a
specified axis, and the geodesic curve joining point A to point B.

Synopsis: double astAxAngle( AstFrame xthis, const double a[], const double b[], int axis
)

Parameters:

this
Pointer to the Frame.

An array of double, with one element for each Frame axis (Naxes attribute) containing the
coordinates of the first point.

An array of double, with one element for each Frame axis (Naxes attribute) containing the
coordinates of the second point.

axis
The number of the Frame axis from which the angle is to be measured (axis numbering starts
at 1 for the first axis).

Returned Value:

astAxAngle
The angle in radians, from the positive direction of the specified axis, to the line AB. If the
Frame is 2-dimensional, it will be in the range [-PI/2,4+PI/2], and positive rotation is in the
same sense as rotation from the positive direction of axis 2 to the positive direction of axis
1. If the Frame has more than 2 axes, a positive value will always be returned in the range
zero to PL.

Notes:

e The geodesic curve used by this function is the path of shortest distance between two points,
as defined by the astDistance function.

e This function will return "bad" coordinate values (AST__BAD) if any of the input coordinates
has this value, or if the require position angle is undefined.
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astAxDistance Find the distance between two astAxDistance
axis values

Description: This function returns a signed value representing the axis increment from axis value vl
to axis value v2.
For a simple Frame, this is a trivial operation returning the difference between the two axis values.
But for other derived classes of Frame (such as a SkyFrame) this is not the case.

Synopsis: double astAxDistance( AstFrame xthis, int axis, double v1, double v2 )

Parameters:
this
Pointer to the Frame.
axis
The index of the axis to which the supplied values refer. The first axis has index 1.

vl
The first axis value.

v2
The second axis value.
Returned Value:

astAxDistance
The distance from the first to the second axis value.

Notes:

e This function will return a "bad" result value (AST__BAD) if any of the input values has
this value.

e A "bad" value will also be returned if this function is invoked with the AST error status set,
or if it should fail for any reason.

ast AxOffset Add an increment onto a supplied axis  astAxOffset
value

Description: This function returns an axis value formed by adding a signed axis increment onto a
supplied axis value.

For a simple Frame, this is a trivial operation returning the sum of the two supplied values. But
for other derived classes of Frame (such as a SkyFrame) this is not the case.

Synopsis: double astAxOffset( AstFrame xthis, int axis, double vl, double dist )

Parameters:
this
Pointer to the Frame.
axis
The index of the axis to which the supplied values refer. The first axis has index 1.
vl
The original axis value.
dist
The axis increment to add to the original axis value.
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Returned Value:

ast AxOffset
The incremented axis value.

Notes:

e This function will return a "bad" result value (AST__BAD) if any of the input values has
this value.

e A "bad" value will also be returned if this function is invoked with the AST error status set,
or if it should fail for any reason.

astBBuf Begin a new graphical buffering context astBBuf

Description: This function starts a new graphics buffering context. A matching call to the function
astEBuf should be used to end the context.

Synopsis: void astBBuf( AstPlot xthis )

Parameters:

this
Pointer to the Plot.

Notes:

e The nature of the buffering is determined by the underlying graphics system (as defined by the
current grf module). Each call to this function to this function simply invokes the astGBBuf
function in the grf module.

astBegin Begin a new AST context astBegin

Description: This macro invokes a function to begin a new AST context. Any Object pointers created
within this context will be annulled when it is later ended using astEnd (just as if astAnnul had
been invoked), unless they have first been exported using astExport or rendered exempt using
astExempt. If annulling a pointer causes an Object’s RefCount attribute to fall to zero (which
happens when the last pointer to it is annulled), then the Object will be deleted.

Synopsis:  void astBegin
Class Applicability:

Object
This macro applies to all Objects.

Notes:

e astBegin attempts to execute even if the AST error status is set on entry.

e Contexts delimited by astBegin and astEnd may be nested to any depth.
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astBorder Draw a border around valid regions of a Plot astBorder

Description: This function draws a (line) border around regions of the plotting area of a Plot which
correspond to valid, unclipped physical coordinates. For example, when plotting using an all-sky
map projection, this function could be used to draw the boundary of the celestial sphere when it
is projected on to the plotting surface.

If the entire plotting area contains valid, unclipped physical coordinates, then the boundary will
just be a rectangular box around the edges of the plotting area.

If the Plot is a Plot3D, this method is applied individually to each of the three 2D Plots encapsulated
within the Plot3D (each of these Plots corresponds to a single 2D plane in the 3D graphics system).
In addition, if the entire plotting volume has valid coordinates in the 3D current Frame of the
Plot3D, then additional lines are drawn along the edges of the 3D plotting volume so that the
entire plotting volume is enclosed within a cuboid grid.

Synopsis: int astBorder( AstPlot xthis )
Parameters:
this
Pointer to the Plot.
Returned Value:

astBorder()
Zero is returned if the plotting space is completely filled by valid, unclipped physical co-
ordinates (so that only a rectangular box was drawn around the edge). Otherwise, one is

returned.
Notes:
e A value of zero will be returned if this function is invoked with the AST error status set, or
if it should fail for any reason.
e An error results if either the current Frame or the base Frame of the Plot is not 2-dimensional
or (for a Plot3D) 3-dimensional.
e An error also results if the transformation between the base and current Frames of the Plot
is not defined (i.e. the Plot’s TranForward attribute is zero).
ast BoundingBox Return a bounding box for ast BoundingBox

previously drawn graphics

Description: This function returns the bounds of a box which just encompasess the graphics produced
by the previous call to any of the Plot methods which produce graphical output. If no such previous
call has yet been made, or if the call failed for any reason, then the bounding box returned by this
function is undefined.

Synopsis: void astBoundingBox( AstPlot xthis, float 1lbnd[2], float ubnd[2] )

Parameters:
this
Pointer to the Plot.
lbnd

A two element array in which is returned the lower limits of the bounding box on each of the
two axes of the graphics coordinate system (the base Frame of the Plot).
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ubnd
A two element array in which is returned the upper limits of the bounding box on each of
the two axes of the graphics coordinate system (the base Frame of the Plot).

Notes:

e An error results if the base Frame of the Plot is not 2-dimensional.

astBox Create a Box astBox

Description: This function creates a new Box and optionally initialises its attributes.

The Box class implements a Region which represents a box with sides parallel to the axes of a
Frame (i.e. an area which encloses a given range of values on each axis). A Box is similar to
an Interval, the only real difference being that the Interval class allows some axis limits to be
unspecified. Note, a Box will only look like a box if the Frame geometry is approximately flat. For
instance, a Box centred close to a pole in a SkyFrame will look more like a fan than a box (the
Polygon class can be used to create a box-like region close to a pole).

Synopsis:  AstBox xastBox( AstFrame xframe, int form, const double pointi[], const double
point2[], AstRegion *unc, const char xoptions, ... )

Parameters:
frame

A pointer to the Frame in which the region is defined. A deep copy is taken of the supplied
Frame. This means that any subsequent changes made to the Frame using the supplied
pointer will have no effect the Region.

form
Indicates how the box is described by the remaining parameters. A value of zero indicates
that the box is specified by a centre position and a corner position. A value of one indicates
that the box is specified by a two opposite corner positions.

point1
An array of double, with one element for each Frame axis (Naxes attribute). If "form" is
zero, this array should contain the coordinates at the centre of the box. If "form" is one,
it should contain the coordinates at the corner of the box which is diagonally opposite the
corner specified by "point2".

point2
An array of double, with one element for each Frame axis (Naxes attribute) containing the
coordinates at any corner of the box.

unc
An optional pointer to an existing Region which specifies the uncertainties associated with
the boundary of the Box being created. The uncertainty in any point on the boundary of
the Box is found by shifting the supplied "uncertainty" Region so that it is centred at the
boundary point being considered. The area covered by the shifted uncertainty Region then
represents the uncertainty in the boundary position. The uncertainty is assumed to be the
same for all points.

If supplied, the uncertainty Region must be of a class for which all instances are centro-
symetric (e.g. Box, Circle, Ellipse, etc.) or be a Prism containing centro-symetric component
Regions. A deep copy of the supplied Region will be taken, so subsequent changes to the
uncertainty Region using the supplied pointer will have no effect on the created Box. Alter-
natively, a NULL Object pointer may be supplied, in which case a default uncertainty is used
equivalent to a box 1.0E-6 of the size of the Box being created.
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The uncertainty Region has two uses: 1) when the astOverlap function compares two Regions
for equality the uncertainty Region is used to determine the tolerance on the comparison, and
2) when a Region is mapped into a different coordinate system and subsequently simplified
(using astSimplify), the uncertainties are used to determine if the transformed boundary can
be accurately represented by a specific shape of Region.
options

Pointer to a null-terminated string containing an optional comma-separated list of attribute
assignments to be used for initialising the new Box. The syntax used is identical to that for
the astSet function and may include "printf" format specifiers identified by "%" symbols in
the normal way.

If the "options" string contains "%" format specifiers, then an optional list of additional
arguments may follow it in order to supply values to be substituted for these specifiers. The
rules for supplying these are identical to those for the astSet function (and for the C "printf"
function).
Returned Value:
astBox()
A pointer to the new Box.

Notes:

o A null Object pointer (AST__NULL) will be returned if this function is invoked with the
AST error status set, or if it should fail for any reason.

Status Handling:

The protected interface to this function includes an extra parameter at the end of the parameter
list descirbed above. This parameter is a pointer to the integer inherited status variable: "int
*status".

astChannel Create a Channel astChannel

Description: This function creates a new Channel and optionally initialises its attributes.

A Channel implements low-level input/output for the AST library. Writing an Object to a Channel
(using astWrite) will generate a textual representation of that Object, and reading from a Channel
(using astRead) will create a new Object from its textual representation.

Normally, when you use a Channel, you should provide "source" and "sink" functions which connect
it to an external data store by reading and writing the resulting text. By default, however, a
Channel will read from standard input and write to standard output. Alternatively, a Channel
can be told to read or write from specific text files using the SinkFile and SourceFile attributes, in
which case no sink or source function need be supplied.

Synopsis:  AstChannel *xastChannel( const char *(x source) ( void ), void (x sink) ( const
char % ), const char xoptions, ... )

Parameters:

source
Pointer to a source function that takes no arguments and returns a pointer to a null-terminated
string. If no value has been set for the SourceFile attribute, this function will be used by the
Channel to obtain lines of input text. On each invocation, it should return a pointer to the
next input line read from some external data store, and a NULL pointer when there are no
more lines to read.
If "source" is NULL and no value has been set for the SourceFile attribute, the Channel will
read from standard input instead.
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sink

Pointer to a sink function that takes a pointer to a null-terminated string as an argument
and returns void. If no value has been set for the SinkFile attribute, this function will be
used by the Channel to deliver lines of output text. On each invocation, it should deliver the
contents of the string supplied to some external data store.

If "sink" is NULL, and no value has been set for the SinkFile attribute, the Channel will
write to standard output instead.

options

Pointer to a null-terminated string containing an optional comma-separated list of attribute
assignments to be used for initialising the new Channel. The syntax used is identical to that
for the astSet function and may include "printf" format specifiers identified by "%" symbols
in the normal way.

If the "options" string contains "%" format specifiers, then an optional list of additional
arguments may follow it in order to supply values to be substituted for these specifiers. The
rules for supplying these are identical to those for the astSet function (and for the C "printf"
function).

Returned Value:

astChannel()
A pointer to the new Channel.
Notes:

e Application code can pass arbitrary data (such as file descriptors, etc) to source and sink
functions using the astPutChannelData function. The source or sink function should use the
astChannelData macro to retrieve this data.

e A null Object pointer (AST__NULL) will be returned if this function is invoked with the
AST error status set, or if it should fail for any reason.

astChannelData Return a pointer to astChannelData

user-supplied data stored with
a Channel

Description: This macro is intended to be used within the source or sink functions associated with a
Channel. It returns any pointer previously stored in the Channel (that is, the Channel that has
invoked the source or sink function) using astPutChannelData.

This mechanism is a thread-safe alternative to passing file descriptors, etc, via static global vari-
ables.

Synopsis:

void xastChannelData

Class Applicability:

Channel

This macro applies to all Channels.

Returned Value:
astChannelData

Notes:

The pointer previously stored with the Channel using astPutChannelData. A NULL pointer
will be returned if no such pointer has been stored with the Channel.

e This routine is not available in the Fortran 77 interface to the AST library.



203

astCircle Create a Circle astCircle

Description: This function creates a new Circle and optionally initialises its attributes.

A Circle is a Region which represents a circle or sphere within the supplied Frame.

Synopsis:  AstCircle xastCircle( AstFrame xframe, int form, const double centre[], const
double point[], AstRegion xunc, const char xoptioms, ... )

Parameters:
frame

A pointer to the Frame in which the region is defined. A deep copy is taken of the supplied
Frame. This means that any subsequent changes made to the Frame using the supplied
pointer will have no effect the Region.

form

Indicates how the circle is described by the remaining parameters. A value of zero indicates
that the circle is specified by a centre position and a position on the circumference. A value
of one indicates that the circle is specified by a centre position and a scalar radius.

centre

An array of double, with one element for each Frame axis (Naxes attribute) containing the
coordinates at the centre of the circle or sphere.

point

unc

If "form" is zero, then this array should have one element for each Frame axis (Naxes at-
tribute), and should be supplied holding the coordinates at a point on the circumference of
the circle or sphere. If "form" is one, then this array should have one element only which
should be supplied holding the scalar radius of the circle or sphere, as a geodesic distance
within the Frame.

An optional pointer to an existing Region which specifies the uncertainties associated with
the boundary of the Circle being created. The uncertainty in any point on the boundary of
the Circle is found by shifting the supplied "uncertainty" Region so that it is centred at the
boundary point being considered. The area covered by the shifted uncertainty Region then
represents the uncertainty in the boundary position. The uncertainty is assumed to be the
same for all points.

If supplied, the uncertainty Region must be of a class for which all instances are centro-
symetric (e.g. Box, Circle, Ellipse, etc.) or be a Prism containing centro-symetric component
Regions. A deep copy of the supplied Region will be taken, so subsequent changes to the
uncertainty Region using the supplied pointer will have no effect on the created Circle. Al-
ternatively, a NULL Object pointer may be supplied, in which case a default uncertainty is
used equivalent to a box 1.0E-6 of the size of the Circle being created.

The uncertainty Region has two uses: 1) when the astOverlap function compares two Regions
for equality the uncertainty Region is used to determine the tolerance on the comparison, and
2) when a Region is mapped into a different coordinate system and subsequently simplified
(using astSimplify), the uncertainties are used to determine if the transformed boundary can
be accurately represented by a specific shape of Region.

options

Pointer to a null-terminated string containing an optional comma-separated list of attribute
assignments to be used for initialising the new Circle. The syntax used is identical to that
for the astSet function and may include "printf" format specifiers identified by "%" symbols
in the normal way.

If the "options" string contains "%" format specifiers, then an optional list of additional
arguments may follow it in order to supply values to be substituted for these specifiers. The
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rules for supplying these are identical to those for the astSet function (and for the C "printf"
function).

Returned Value:

astCircle()
A pointer to the new Circle.

Notes:

e A null Object pointer (AST__NULL) will be returned if this function is invoked with the
AST error status set, or if it should fail for any reason.

astCirclePars Returns the geometric parameters of  astCirclePars
an Circle

Description: This function returns the geometric parameters describing the supplied Circle.

Synopsis: void astCirclePars( AstCircle xthis, double xcentre, double xradius, double xpl

)
Parameters:
this
Pointer to the Region.
centre
Pointer to an array in which to return the coordinates of the Circle centre. The length of this
array should be no less than the number of axes in the associated coordinate system.
radius
Returned holding the radius of the Circle, as an geodesic distance in the associated coordinate
system.
pl
Pointer to an array in which to return the coordinates of a point on the circumference of the
Circle. The length of this array should be no less than the number of axes in the associated
coordinate system. A NULL pointer can be supplied if the circumference position is not
needed.
Notes:

e If the coordinate system represented by the Circle has been changed since it was first created,
the returned parameters refer to the new (changed) coordinate system, rather than the original
coordinate system. Note however that if the transformation from original to new coordinate
system is non-linear, the shape represented by the supplied Circle object may not be an
accurate circle.

astClear Clear attribute values for an Object astClear

Description: This function clears the values of a specified set of attributes for an Object. Clearing
an attribute cancels any value that has previously been explicitly set for it, so that the standard
default attribute value will subsequently be used instead. This also causes the astTest function to
return the value zero for the attribute, indicating that no value has been set.

Synopsis: void astClear( AstObject xthis, const char xattrib )
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Parameters:
this
Pointer to the Object.
attrib

Pointer to a null-terminated character string containing a comma-separated list of the names
of the attributes to be cleared.

Class Applicability:

Object
This function applies to all Objects.

Notes:

e Attribute names are not case sensitive and may be surrounded by white space.

e It does no harm to clear an attribute whose value has not been set.

e An error will result if an attempt is made to clear the value of a read-only attribute.
astClearStatus Clear the AST error status astClearStatus

Description: This macro resets the AST error status to an OK value, indicating that an error condition
(if any) has been cleared.

Synopsis: void astClearStatus

Notes:

e If the AST error status is set to an error value (after an error), most AST functions will
not execute and will simply return without action. Using astClearStatus will restore normal
behaviour.

astClip Set up or remove clipping for a Plot astClip

Description: This function defines regions of a Plot which are to be clipped. Any subsequent graphical
output created using the Plot will then be visible only within the unclipped regions of the plotting
area. See also the Clip attribute.

Synopsis: void astClip( AstPlot xthis, int iframe, const double lbnd[], const double ubnd[]
)

Parameters:

this
Pointer to the Plot.

iframe
The index of the Frame within the Plot to which the clipping limits supplied in "lbnd" and
"ubnd" (below) refer. Clipping may be applied to any of the coordinate systems associated
with a Plot (as defined by the Frames it contains), so this index may take any value from 1 to
the number of Frames in the Plot (Nframe attribute). In addition, the values AST__BASE
and AST__CURRENT may be used to specify the base and current Frames respectively.
For example, a value of AST__CURRENT causes clipping to be performed in physical co-
ordinates, while a value of AST__BASE would clip in graphical coordinates. Clipping may

also be removed completely by giving a value of AST__NOFRAME. In this case any clipping
bounds supplied (below) are ignored.
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Ibnd

An array with one element for each axis of the clipping Frame (identified by the index
"iframe"). This should contain the lower bound, on each axis, of the region which is to
remain visible (unclipped).

ubnd

Notes:

An array with one element for each axis of the clipping Frame (identified by the index
"iframe"). This should contain the upper bound, on each axis, of the region which is to
remain visible (unclipped).

Only one clipping Frame may be active at a time. This function will deactivate any previously-
established clipping Frame before setting up new clipping limits.

The clipping produced by this function is in addition to that specified by the Clip attribute
which occurs at the edges of the plotting area established when the Plot is created (see
astPlot). The underlying graphics system may also impose further clipping.

When testing a graphical position for clipping, it is first transformed into the clipping Frame.
The resulting coordinate on each axis is then checked against the clipping limits (given by
"lbnd" and "ubnd"). By default, a position is clipped if any coordinate lies outside these
limits. However, if a non-zero value is assigned to the Plot’s ClipOp attribute, then a position
is only clipped if the coordinates on all axes lie outside their clipping limits.

If the lower clipping limit exceeds the upper limit for any axis, then the sense of clipping for
that axis is reversed (so that coordinate values lying between the limits are clipped instead
of those lying outside the limits). To produce a "hole" in a coordinate space (that is, an
internal region where nothing is plotted), you should supply all the bounds in reversed order,
and set the ClipOp attribute for the Plot to a non-zero value.

FEither clipping limit may be set to the value AST__BAD, which is equivalent to setting it to
infinity (or minus infinity for a lower bound) so that it is not used.

If a graphical position results in any bad coordinate values (AST__BAD) when transformed
into the clipping Frame, then it is treated (for the purposes of producing graphical output)
as if it were clipped.

When a Plot is used as a Mapping to transform points (e.g. using astTran2), any clipped
output points are assigned coordinate values of AST__BAD.

An error results if the base Frame of the Plot is not 2-dimensional.

astClone Clone (duplicate) an Object pointer astClone

Description: This function returns a duplicate pointer to an existing Object. It also increments the
Object’s RefCount attribute to keep track of how many pointers have been issued.

Note that this function is NOT equivalent to an assignment statement, as in general the two
pointers will not have the same value.

Synopsis:

AstObject *astClone( AstObject xthis )

Parameters:

this

Original pointer to the Object.

Class Applicability:

Object

This function applies to all Objects.
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Returned Value:

astClone()
A duplicate pointer to the same Object.
Notes:
e A null Object pointer (AST__NULL) will be returned if this function is invoked with the
AST error status set, or if it should fail for any reason.
astCmpFrame Create a CmpFrame astCmpFrame

Description: This function creates a new CmpFrame and optionally initialises its attributes.

A CmpFrame is a compound Frame which allows two component Frames (of any class) to be
merged together to form a more complex Frame. The axes of the two component Frames then
appear together in the resulting CmpFrame (those of the first Frame, followed by those of the
second Frame).

Since a CmpFrame is itself a Frame, it can be used as a component in forming further CmpFrames.
Frames of arbitrary complexity may be built from simple individual Frames in this way.

Also since a Frame is a Mapping, a CmpFrame can also be used as a Mapping. Normally, a
CmpFrame is simply equivalent to a UnitMap, but if either of the component Frames within a
CmpFrame is a Region (a sub-class of Frame), then the CmpFrame will use the Region as a
Mapping when transforming values for axes described by the Region. Thus input axis values

corresponding to positions which are outside the Region will result in bad output axis values.

Synopsis:
)

Parameters:

AstCmpFrame *astCmpFrame( AstFrame xframel, AstFrame xframe2, const char koptions,

framel
Pointer to the first component Frame.

frame2
Pointer to the second component Frame.

options
Pointer to a null-terminated string containing an optional comma-separated list of attribute
assignments to be used for initialising the new CmpFrame. The syntax used is identical to
that for the astSet function and may include "printf" format specifiers identified by "%"
symbols in the normal way.

If

the "options" string contains "%" format specifiers, then an optional list of additional

arguments may follow it in order to supply values to be substituted for these specifiers. The
rules for supplying these are identical to those for the astSet function (and for the C "printf"
function).

Returned Value:

astCmpFrame()

A

Notes:

o A

pointer to the new CmpFrame.

null Object pointer (AST__NULL) will be returned if this function is invoked with the

AST error status set, or if it should fail for any reason.
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Status Handling:

The protected interface to this function includes an extra parameter at the end of the parameter
list descirbed above. This parameter is a pointer to the integer inherited status variable: "int
*status".

astCmpMap Create a CmpMap astCmpMap

Description: This function creates a new CmpMap and optionally initialises its attributes.

A CmpMap is a compound Mapping which allows two component Mappings (of any class) to be
connected together to form a more complex Mapping. This connection may either be "in series"
(where the first Mapping is used to transform the coordinates of each point and the second mapping
is then applied to the result), or "in parallel" (where one Mapping transforms the earlier coordinates
for each point and the second Mapping simultaneously transforms the later coordinates).

Since a CmpMap is itself a Mapping, it can be used as a component in forming further CmpMaps.
Mappings of arbitrary complexity may be built from simple individual Mappings in this way.

Synopsis:  AstCmpMap *astCmpMap( AstMapping xmapl, AstMapping *map2, int series, const
xoptions, ... )

Parameters:
mapl

Pointer to the first component Mapping.

map2
Pointer to the second component Mapping.

series
If a non-zero value is given for this parameter, the two component Mappings will be connected
in series. A zero value requests that they are connected in parallel.

options
Pointer to a null-terminated string containing an optional comma-separated list of attribute
assignments to be used for initialising the new CmpMap. The syntax used is identical to that
for the astSet function and may include "printf" format specifiers identified by "%" symbols
in the normal way.

If the "options" string contains "%" format specifiers, then an optional list of additional
arguments may follow it in order to supply values to be substituted for these specifiers. The
rules for supplying these are identical to those for the astSet function (and for the C "printf"
function).

Returned Value:

astCmpMap()
A pointer to the new CmpMap.

Notes:

e If the component Mappings are connected in series, then using the resulting CmpMap to
transform coordinates will cause the first Mapping to be applied, followed by the second
Mapping. If the inverse CmpMap transformation is requested, the two component Mappings
will be applied in both the reverse order and the reverse direction.

e When connecting two component Mappings in series, the number of output coordinates gen-
erated by the first Mapping (its Nout attribute) must equal the number of input coordinates
accepted by the second Mapping (its Nin attribute).

char
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o Ifthe component Mappings of a CmpMap are connected in parallel, then the first Mapping will
be used to transform the earlier input coordinates for each point (and to produce the earlier
output coordinates) and the second Mapping will be used simultaneously to transform the
remaining input coordinates (to produce the remaining output coordinates for each point).
If the inverse transformation is requested, each Mapping will still be applied to the same
coordinates, but in the reverse direction.

e When connecting two component Mappings in parallel, there is no restriction on the number
of input and output coordinates for each Mapping.

e Note that the component Mappings supplied are not copied by astCmpMap (the new CmpMap
simply retains a reference to them). They may continue to be used for other purposes, but
should not be deleted. If a CmpMap containing a copy of its component Mappings is required,
then a copy of the CmpMap should be made using astCopy.

e A null Object pointer (AST__NULL) will be returned if this function is invoked with the
AST error status set, or if it should fail for any reason.

astCmpRegion Create a CmpRegion astCmpRegion

Description: This function creates a new CmpRegion and optionally initialises its attributes.

Synopsis:

A CmpRegion is a Region which allows two component Regions (of any class) to be combined to
form a more complex Region. This combination may be performed a boolean AND, OR or XOR
(exclusive OR) operator. If the AND operator is used, then a position is inside the CmpRegion
only if it is inside both of its two component Regions. If the OR operator is used, then a position
is inside the CmpRegion if it is inside either (or both) of its two component Regions. If the XOR
operator is used, then a position is inside the CmpRegion if it is inside one but not both of its two
component Regions. Other operators can be formed by negating one or both component Regions
before using them to construct a new CmpRegion.

The two component Region need not refer to the same coordinate Frame, but it must be possible
for the astConvert function to determine a Mapping between them (an error will be reported
otherwise when the CmpRegion is created). For instance, a CmpRegion may combine a Region
defined within an ICRS SkyFrame with a Region defined within a Galactic SkyFrame. This is
acceptable because the SkyFrame class knows how to convert between these two systems, and
consequently the astConvert function will also be able to convert between them. In such cases,
the second component Region will be mapped into the coordinate Frame of the first component
Region, and the Frame represented by the CmpRegion as a whole will be the Frame of the first
component Region.

Since a CmpRegion is itself a Region, it can be used as a component in forming further CmpRegions.
Regions of arbitrary complexity may be built from simple individual Regions in this way.

Parameters:

AstCmpRegion *astCmpRegion( AstRegion *regionl, AstRegion *region2, int oper,
const char xoptioms, ... )
regionl

Pointer to the first component Region.

region2
Pointer to the second component Region. This Region will be transformed into the coordinate
Frame of the first region before use. An error will be reported if this is not possible.

oper

The boolean operator with which to combine the two Regions. This must be one of the
symbolic constants AST__AND, AST__OR or AST__XOR.
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options
Pointer to a null-terminated string containing an optional comma-separated list of attribute
assignments to be used for initialising the new CmpRegion. The syntax used is identical
to that for the astSet function and may include "printf" format specifiers identified by "%"
symbols in the normal way.

If the "options" string contains "%" format specifiers, then an optional list of additional
arguments may follow it in order to supply values to be substituted for these specifiers. The
rules for supplying these are identical to those for the astSet function (and for the C "printf"
function).

Returned Value:
astCmpRegion()
A pointer to the new CmpRegion.

Notes:

o If one of the supplied Regions has an associated uncertainty, that uncertainty will also be
used for the returned CmpRegion. If both supplied Regions have associated uncertainties,
the uncertainty associated with the first Region will be used for the returned CmpRegion.

e Deep copies are taken of the supplied Regions. This means that any subsequent changes made
to the component Regions using the supplied pointers will have no effect on the CmpRegion.

e A null Object pointer (AST__NULL) will be returned if this function is invoked with the
AST error status set, or if it should fail for any reason.

astColumnName  Get the name of the column  astColumnName
at a given index within the

Table

Description: This function returns a string holding the name of the column with the given index within
the Table.

This function is intended primarily as a means of iterating round all the columns in a Table. For
this purpose, the number of columns in the Table is given by the Ncolumn attribute of the Table.
This function could then be called in a loop, with the index value going from zero to one less than
Ncolumn.

Note, the index associated with a column decreases monotonically with the age of the column: the
oldest Column in the Table will have index one, and the Column added most recently to the Table
will have the largest index.

Synopsis: const char kxastColumnName( AstTable xthis, int index )

Parameters:
this
Pointer to the Table.
index

The index into the list of columns. The first column has index one, and the last has index
"Ncolumn".

Returned Value:

astColumnName()
A pointer to a null-terminated string containing the upper case column name.
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Notes:

e The returned pointer is guaranteed to remain valid and the string to which it points will
not be over-written for a total of 50 successive invocations of this function. After this, the
memory containing the string may be re-used, so a copy of the string should be made if it is
needed for longer than this.

e A NULL pointer will be returned if this function is invoked with the AST error status set, or
if it should fail for any reason.

astColumnNull Get or set the null value for an astColumnNull
integer column of a FITS table

Description: This function allows a null value to be stored with a named integer-valued column in
a FitsTable. The supplied null value is assigned to the TNULLn keyword in the FITS header
associated with the FitsTable. A value in the named column is then considered to be null if 1) it
equals the null value supplied to this function, or 2) no value has yet been stored in the cell.

As well as setting a new null value, this function also returns the previous null value. If no null
value has been set previously, a default value will be returned. This default will be an integer value
that does not currently occur anywhere within the named column. If no such value can be found,
what happens depends on whether the column contains any cells in which no values have yet been
stored. If so, an error will be reported. Otherwise (i.e. if there are no null values in the column),
an arbitrary value of zero will be returned as the function value, and no TNULLn keyword will be
stored in the FITS header.

A flag is returned indicating if the returned null value was set explicitly by a previous call to this
function, or is a default value.

A second flag is returned indicating if the named column contains any null values (i.e. values equal
to the supplied null value, or cells to which no value has yet been assigned).

Synopsis: int astColumnNull( AstFitsTable *this, const char *column, int set, int newval,
int *wasset, int *hasnull )

Parameters:
this
Pointer to the Table.

column
The character string holding the name of the column. Trailing spaces are ignored.

set
If non-zero, the value supplied for parameter "newval" will be stored as the current null
value, replacing any value set by a previous call to this function. If zero, the value supplied
for parameter "newval" is ignored and the current null value is left unchanged.

newval
The new null value to use. Ignored if "set" is zero. An error will be reported if the supplied
value is outside the range of values that can be stored in the integer data type associated
with the column.

wasset
Pointer to an int that will be returned non-zero if the returned null value was set previously
via an earlier invocation of this function. Zero is returned otherwise. If the named column
does not exist, or an error occurs, a value of zero is returned.

hasnull
Pointer to an int that will be returned non-zero if and only if the named column currently



212 B AST FUNCTION DESCRIPTIONS

contains any values equal to the null value on exit (i.e. "newval" if "set" is non-zero, or the
returned function value otherwise), or contains any empty cells. If the named column does
not exist, or an error occurs, a value of zero is returned. If a NULL pointer is supplied for
"hasnull", no check on the presence of null values will be performed.

Returned Value:

astColumnNull()

The null value that was in use on entry to this function. If a null value has been set by a
previous invocation of this function, it will be returned. Otherwise, if "set" is non-zero, the
supplied "newval" value is returned. Otherwise, a default value is chosen (if possible) that
does not currently occur in the named column. If all available values are in use in the column,
an error is reported if and only if the column contains any empty cells. Otherwise, a value of
zero is returned. A value of zero is also returned if the named column does not exist, or an
€ITor OCCurs.

Notes:

e The FITS binary table definition allows only integer-valued columns to have an associated
null value. This routine will return without action if the column is not integer-valued.

astColumnShape Returns the shape of the astColumnShape
values in a named column

Description: This function returns the number of dimensions spaned by each value in a named column
of a Table, together with the length of each dimension. These are the values supplied when the
column was created using ast AddColumn.

Synopsis: void astColumnShape( AstTable *this, const char xcolumn, int mxdim, int *ndim,
int *dims )

Parameters:
this
Pointer to the Table.

column
The character string holding the upper case name of the column. Trailing spaces are ignored.

mxdim
The length of the "dims" array.

ndim
Pointer to an int in which to return the number of dimensions spanned by values in the named
column. This will be zero if the column contains scalar values.

dims
Pointer to an array in which to return the length of each dimension. Any excess trailing
elements will be filled with the value 1.

Notes:

e No error is reported if the requested column cannot be found in the given Table. A value of
zero is returned for "ndim" and the supplied values in "dims" are left unchanged.

o A value of zero is returned for "ndim" if an error occurs.
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astColumnSize  Get the number of bytes needed  astColumnSize
to hold a full column of data

Description: This function returns the number of bytes of memory that must be allocated prior to
retrieving the data from a column using astGetColumnData.

Synopsis: size_t astColumnSize( AstFitsTable xthis, const char *column, int xhasnull )

Parameters:
this
Pointer to the Table.
column
The character string holding the name of the column. Trailing spaces are ignored.

Returned Value:

astColumnNull()
The number of bytes required to store the column data.

Notes:
e An error will be reported if the named column does not exist in the FitsTable.
e Zero will be returned as the function value in an error occurs.
astConvert Determine how to convert between two astConvert

coordinate systems

Description: This function compares two Frames and determines whether it is possible to convert be-
tween the coordinate systems which they represent. If conversion is possible, it returns a FrameSet
which describes the conversion and which may be used (as a Mapping) to transform coordinate
values in either direction.

The same function may also be used to determine how to convert between two FrameSets (or
between a Frame and a FrameSet, or vice versa). This mode is intended for use when (for example)
two images have been calibrated by attaching a FrameSet to each. astConvert might then be used
to search for a celestial coordinate system that both images have in common, and the result could
then be used to convert between the pixel coordinates of both images — having effectively used
their celestial coordinate systems to align them.

When using FrameSets, there may be more than one possible intermediate coordinate system in
which to perform the conversion (for instance, two FrameSets might both have celestial coordi-
nates, detector coordinates, pixel coordinates, etc.). A comma-separated list of coordinate system
domains may therefore be given which defines a priority order to use when selecting the intermedi-
ate coordinate system. The path used for conversion must go via an intermediate coordinate system
whose Domain attribute matches one of the domains given. If conversion cannot be achieved using
the first domain, the next one is considered, and so on, until success is achieved.

Synopsis: AstFrameSet *astConvert( AstFrame xfrom, AstFrame xto, const char *domainlist

)

Parameters:

from
Pointer to a Frame which represents the "source" coordinate system. This is the coordinate
system in which you already have coordinates available.
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to
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If a FrameSet is given, its current Frame (as determined by its Current attribute) is taken to
describe the source coordinate system. Note that the Base attribute of this FrameSet may
be modified by this function to indicate which intermediate coordinate system was used (see
under "FrameSets" in the "Applicability" section for details).

Pointer to a Frame which represents the "destination" coordinate system. This is the coor-
dinate system into which you wish to convert your coordinates.

If a FrameSet is given, its current Frame (as determined by its Current attribute) is taken
to describe the destination coordinate system. Note that the Base attribute of this FrameSet
may be modified by this function to indicate which intermediate coordinate system was used
(see under "FrameSets" in the "Applicability" section for details).

domainlist

Pointer to a null-terminated character string containing a comma-separated list of Frame
domains. This may be used to define a priority order for the different intermediate coordinate
systems that might be used to perform the conversion.

The function will first try to obtain a conversion by making use only of an intermediate
coordinate system whose Domain attribute matches the first domain in this list. If this
fails, the second domain in the list will be used, and so on, until conversion is achieved. A
blank domain (e.g. two consecutive commas) indicates that all coordinate systems should be
considered, regardless of their domains.

This list is case-insensitive and all white space is ignored. If you do not wish to restrict
the domain in this way, you should supply an empty string. This is normally appropriate if
either of the source or destination coordinate systems are described by Frames (rather than
FrameSets), since there is then usually only one possible choice of intermediate coordinate
system.

Class Applicability:
DSBSpecFrame

If the AlignSideBand attribute is non-zero, alignment occurs in the upper sideband expressed
within the spectral system and standard of rest given by attributes AlignSystem and Align-
StdOfRest. If AlignSideBand is zero, the two DSBSpecFrames are aligned as if they were
simple SpecFrames (i.e. the SideBand is ignored).

Frame

This function applies to all Frames. Alignment occurs within the coordinate system given by
attribute AlignSystem.

FrameSet

If either of the "from" or "to" parameters is a pointer to a FrameSet, then astConvert will
attempt to convert from the coordinate system described by the current Frame of the "from"
FrameSet to that described by the current Frame of the "to" FrameSet.

To achieve this, it will consider all of the Frames within each FrameSet as a possible way
of reaching an intermediate coordinate system that can be used for the conversion. There
is then the possibility that more than one conversion path may exist and, unless the choice
is sufficiently restricted by the "domainlist" string, the sequence in which the Frames are
considered can be important. In this case, the search for a conversion path proceeds as
follows:

e FEach field in the "domainlist" string is considered in turn.

e The Frames within each FrameSet are considered in a specific order: (1) the base Frame
is always considered first, (2) after this come all the other Frames in Frame-index order
(but omitting the base and current Frames), (3) the current Frame is always considered
last. However, if either FrameSet’s Invert attribute is set to a non-zero value (so that the
FrameSet is inverted), then its Frames are considered in reverse order. (Note that this
still means that the base Frame is considered first and the current Frame last, because
the Invert value will also cause these Frames to swap places.)
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e All source Frames are first considered (in the appropriate order) for conversion to the
first destination Frame. If no suitable intermediate coordinate system emerges, they are
then considered again for conversion to the second destination Frame (in the appropriate
order), and so on.

e Generally, the first suitable intermediate coordinate system found is used. However, the
overall Mapping between the source and destination coordinate systems is also exam-
ined. Preference is given to cases where both the forward and inverse transformations
are defined (as indicated by the TranForward and TranInverse attributes). If only one
transformation is defined, the forward one is preferred.

e If the domain of the intermediate coordinate system matches the current "domainlist"
field, the conversion path is accepted. Otherwise, the next "domainlist" field is considered
and the process repeated.

If conversion is possible, the Base attributes of the two FrameSets will be modified on exit
to identify the Frames used to access the intermediate coordinate system which was finally
accepted.

Note that it is possible to force a particular Frame within a FrameSet to be used as the basis
for the intermediate coordinate system, if it is suitable, by (a) focussing attention on it by
specifying its domain in the "domainlist" string, or (b) making it the base Frame, since this
is always considered first.

SpecFrame

Alignment occurs within the spectral system and standard of rest given by attributes Align-
System and AlignStdOfRest.

TimeFrame

Alignment occurs within the time system and time scale given by attributes AlignSystem and
AlignTimeScale.

Returned Value:

astConvert()

If the requested coordinate conversion is possible, the function returns a pointer to a FrameSet
which describes the conversion. Otherwise, a null Object pointer (AST__NULL) is returned
without error.

If a FrameSet is returned, it will contain two Frames. Frame number 1 (its base Frame)
will describe the source coordinate system, corresponding to the "from" parameter. Frame
number 2 (its current Frame) will describe the destination coordinate system, corresponding
to the "to" parameter. The Mapping which inter-relates these two Frames will perform the
required conversion between their respective coordinate systems.

Note that a FrameSet may be used both as a Mapping and as a Frame. If the result is used
as a Mapping (e.g. with astTran2), then it provides a means of converting coordinates from
the source to the destination coordinate system (or vice versa if its inverse transformation
is selected). If it is used as a Frame, its attributes will describe the destination coordinate
system.

Examples:

cvt

cvt

= astConvert( a, b, "" );

Attempts to convert between the coordinate systems represented by "a" and "b" (assumed
to be Frames). If successful, a FrameSet is returned via the "cvt" pointer which may be used
to apply the conversion to sets of coordinates (e.g. using astTran2).

= astConvert( astSkyFrame(""), astSkyFrame("Equinox=2005"), "" );

Creates a FrameSet which describes precession in the default FK5 celestial coordinate system
between equinoxes J2000 (also the default) and J2005. The returned "cvt" pointer may then
be passed to astTran2 to apply this precession correction to any number of coordinate values
given in radians.
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cvt

Notes:
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Note that the returned FrameSet also contains information about how to format coordinate
values. This means that setting its Report attribute to 1 is a simple way to obtain printed
output (formatted in sexagesimal notation) to show the coordinate values before and after
conversion.

= astConvert( a, b, "sky,detector," );

Attempts to convert between the coordinate systems represented by the current Frames of
"a" and "b" (now assumed to be FrameSets), via the intermediate "SKY" coordinate system.
This, by default, is the Domain associated with a celestial coordinate system represented by
a SkyFrame.

If this fails (for example, because either FrameSet lacks celestial coordinate information), then
the user-defined "DETECTOR" coordinate system is used instead. If this also fails, then all
other possible ways of achieving conversion are considered before giving up.

The returned pointer "cvt" indicates whether conversion was possible and will have the value
AST__NULL if it was not. If conversion was possible, "cvt" will point at a new FrameSet
describing the conversion.

The Base attributes of the two FrameSets will be set by astConvert to indicate which of
their Frames was used for the intermediate coordinate system. This means that you can
subsequently determine which coordinate system was used by enquiring the Domain attribute
of either base Frame.

The Mapping represented by the returned FrameSet results in alignment taking place in
the coordinate system specified by the AlignSystem attribute of the "to" Frame. See the
description of the AlignSystem attribute for further details.

When aligning (say) two images, which have been calibrated by attaching FrameSets to
them, it is usually necessary to convert between the base Frames (representing "native" pixel
coordinates) of both FrameSets. This may be achieved by inverting the FrameSets (e.g. using
astInvert) so as to interchange their base and current Frames before using astConvert.

A null Object pointer (AST__NULL) will be returned if this function is invoked with the
AST error status set, or if it should fail for any reason.

astConvex<X> Create a new Polygon astConvex<X>

representing the convex hull of a
2D data grid

Description: This is a set of functions that create the shortest Polygon that encloses all pixels with a
specified value within a gridded 2-dimensional data array (e.g. an image).

A basic 2-dimensional Frame is used to represent the pixel coordinate system in the returned
Polygon. The Domain attribute is set to "PIXEL", the Title attribute is set to "Pixel coordinates",
and the Unit attribute for each axis is set to "pixel". All other attributes are left unset. The nature
of the pixel coordinate system is determined by parameter "starpix".

You should use a function which matches the numerical type of the data you are processing by
replacing <X> in the generic function name astConvex<X> by an appropriate 1- or 2-character
type code. For example, if you are procesing data with type "float", you should use the function
astConvexF (see the "Data Type Codes" section below for the codes appropriate to other numerical

types).

Synopsis:

AstPolygon xastConvex<X>( <Xtype> value, int oper, const <Xtype> arrayl[],

const int 1lbnd[2], const int ubnd[2], int starpix )

Parameters:
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value
A data value that specifies the pixels to be included within the convex hull.
oper
Indicates how the "value" parameter is used to select the required pixels. It can have any of
the following values:
e AST__LT: include pixels with value less than "value".
AST__LE: include pixels with value less than or equal to "value".
AST__EQ: include pixels with value equal to "value".
AST__NE: include pixels with value not equal to "value".
AST__GE: include pixels with value greater than or equal to "value".

AST__GT: include pixels with value greater than "value".

array
Pointer to a 2-dimensional array containing the data to be processed. The numerical type of
this array should match the 1- or 2-character type code appended to the function name (e.g.
if you are using astConvexF, the type of each array element should be "float").
The storage order of data within this array should be such that the index of the first grid
dimension varies most rapidly and that of the second dimension least rapidly (i.e. Fortran
array indexing is used).

Ibnd
Pointer to an array of two integers containing the coordinates of the centre of the first pixel
in the input grid along each dimension.

ubnd
Pointer to an array of two integers containing the coordinates of the centre of the last pixel
in the input grid along each dimension.
Note that "lbnd" and "ubnd" together define the shape and size of the input grid, its extent
along a particular (j’th) dimension being ubndl[j]-lbnd[j]+1 (assuming the index "j" to be
zero-based). They also define the input grid’s coordinate system, each pixel having unit
extent along each dimension with integral coordinate values at its centre or upper corner, as
selected by parameter "starpix".

starpix
A flag indicating the nature of the pixel coordinate system used to describe the vertex positions
in the returned Polygon. If non-zero, the standard Starlink definition of pixel coordinate is
used in which a pixel with integer index I spans a range of pixel coordinate from (I-1) to I
(i.e. pixel corners have integral pixel coordinates). If zero, the definition of pixel coordinate
used by other AST functions such as astResample, astMask, etc., is used. In this definition, a
pixel with integer index I spans a range of pixel coordinate from (I-0.5) to (I+0.5) (i.e. pixel
centres have integral pixel coordinates).

Returned Value:

astConvex<X>()
A pointer to the required Polygon. NULL is returned without error if the array contains no
pixels that satisfy the criterion specified by "value" and "oper".

Notes:

e NULL will be returned if this function is invoked with the global error status set, or if it
should fail for any reason.

Data Type Codes:

To select the appropriate masking function, you should replace <X> in the generic function name
astConvex<X> with a 1- or 2-character data type code, so as to match the numerical type <Xtype>
of the data you are processing, as follows:
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D: double
F: float
L: long int

UL: unsigned long int
e [:int

e Ul unsigned int

S: short int

US: unsigned short int
B: byte (signed char)

e UB: unsigned byte (unsigned char)

For example, astConvexD would be used to process "double" data, while astConvexS would be
used to process "short int" data, etc.

astCopy Copy an Object astCopy

Description: This function creates a copy of an Object and returns a pointer to the resulting new
Object. It makes a "deep" copy, which contains no references to any other Object (i.e. if the
original Object contains references to other Objects, then the actual data are copied, not simply
the references). This means that modifications may safely be made to the copy without indirectly
affecting any other Object.

Synopsis:  AstObject xastCopy( const AstObject *this )

Parameters:
this
Pointer to the Object to be copied.
Class Applicability:

Object
This function applies to all Objects.

Returned Value:

astCopy ()
Pointer to the new Object.
Notes:
e A null Object pointer (AST__NULL) will be returned if this function is invoked with the
AST error status set, or if it should fail for any reason.
astCurrentTime Return the current system astCurrentTime

time

Description: This function returns the current system time, represented in the form specified by the
supplied TimeFrame. That is, the returned floating point value should be interpreted using the
attribute values of the TimeFrame. This includes System, TimeOrigin, LTOffset, TimeScale, and
Unit.

Synopsis: double astCurrentTime( AstTimeFrame xthis )
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Parameters:
this
Pointer to the TimeFrame.
Returned Value:
astCurrentTime()

A TimeFrame axis value representing the current system time.

Notes:

o Values of AST__BAD will be returned if this function is invoked with the AST error status
set, or if it should fail for any reason.

e It is assumes that the system time (returned by the C time() function) follows the POSIX
standard, representing a continuous monotonic increasing count of SI seconds since the epoch
00:00:00 UTC 1 January 1970 AD (equivalent to TAI with a constant offset). Resolution is
one second.

e An error will be reported if the TimeFrame has a TimeScale value which cannot be converted
to TAI (e.g. "angular" systems such as UT1, GMST, LMST and LAST).

e Any inaccuracy in the system clock will be reflected in the value returned by this function.

astCurve Draw a geodesic curve astCurve

Description: This function draws a geodesic curve between two points in the physical coordinate system
of a Plot. The curve drawn is the path of shortest distance joining the two points (as defined by
the astDistance function for the current Frame of the Plot). For example, if the current Frame is
a basic Frame, then the curve joining the two points will be a straight line in physical coordinate
space. If the current Frame is more specialised and describes, for instance, a sky coordinate system,
then the geodesic curve would be a great circle in physical coordinate space passing through the
two sky positions given.

Note that the geodesic curve is transformed into graphical coordinate space for plotting, so that a
straight line in physical coordinates may result in a curved line being drawn if the Mapping involved
is non-linear. Any discontinuities in the Mapping between physical and graphical coordinates are
catered for, as is any clipping established using astClip.

If you need to draw many geodesic curves end-to-end, then the astPolyCurve function is equivalent
to repeatedly using astCurve, but will usually be more efficient.

If you need to draw curves which are not geodesics, see astGenCurve or astGridLine.
Synopsis: void astCurve( AstPlot *this, const double start[], const double finish[] )

Parameters:
this
Pointer to the Plot.
start
An array, with one element for each axis of the Plot, giving the physical coordinates of the
first point on the geodesic curve.
finish

An array, with one element for each axis of the Plot, giving the physical coordinates of the
second point on the geodesic curve.

Notes:
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e No curve is drawn if either of the "start" or "finish" arrays contains any coordinates with
the value AST__BAD.

e An error results if the base Frame of the Plot is not 2-dimensional.

e An error also results if the transformation between the current and base Frames of the Plot
is not defined (i.e. the Plot’s TranInverse attribute is zero).

astDSBSpecFrame Create a DSBSpeckrame astDSBSpecFrame

Description: This function creates a new DSBSpecFrame and optionally initialises its attributes.

A DSBSpecFrame is a specialised form of SpecFrame which represents positions in a spectrum
obtained using a dual sideband instrument. Such an instrument produces a spectrum in which
each point contains contributions from two distinctly different frequencies, one from the "lower
side band" (LSB) and one from the "upper side band" (USB). Corresponding LSB and USB
frequencies are connected by the fact that they are an equal distance on either side of a fixed
central frequency known as the "Local Oscillator" (LO) frequency.

When quoting a position within such a spectrum, it is necessary to indicate whether the quoted
position is the USB position or the corresponding LSB position. The SideBand attribute provides
this indication. Another option that the SideBand attribute provides is to represent a spectral
position by its topocentric offset from the LO frequency.

In practice, the LO frequency is specified by giving the distance from the LO frequency to some
"central" spectral position. Typically this central position is that of some interesting spectral
feature. The distance from this central position to the LO frequency is known as the "intermediate
frequency" (IF). The value supplied for IF can be a signed value in order to indicate whether the
LO frequency is above or below the central position.

Synopsis:  AstDSBSpecFrame kastDSBSpecFrame( const char koptions, ... )
Parameters:

options
Pointer to a null-terminated string containing an optional comma-separated list of attribute
assignments to be used for initialising the new DSBSpecFrame. The syntax used is identical
to that for the astSet function and may include "printf" format specifiers identified by "%"
symbols in the normal way.

If the "options" string contains "%" format specifiers, then an optional list of additional
arguments may follow it in order to supply values to be substituted for these specifiers. The
rules for supplying these are identical to those for the astSet function (and for the C "printf"
function).

Returned Value:

astDSBSpecFrame()
A pointer to the new DSBSpecFrame.

Notes:

e A null Object pointer (AST__NULL) will be returned if this function is invoked with the
AST error status set, or if it should fail for any reason.
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astDecompose Decompose a Mapping into two astDecompose
component Mappings

Description: This function returns pointers to two Mappings which, when applied either in series or
parallel, are equivalent to the supplied Mapping.

Since the Frame class inherits from the Mapping class, Frames can be considered as special types
of Mappings and so this method can be used to decompose either CmpMaps or CmpFrames.

Synopsis: void astDecompose( AstMapping *this, AstMapping *¥mapl, AstMapping #*map2, int
*series, int xinvertl, int *invert2 )

Parameters:
this
Pointer to the Mapping.
mapl
Address of a location to receive a pointer to first component Mapping.

map?2
Address of a location to receive a pointer to second component Mapping.

series
Address of a location to receive a value indicating if the component Mappings are applied
in series or parallel. A non-zero value means that the supplied Mapping is equivalent to
applying mapl followed by map2 in series. A zero value means that the supplied Mapping is
equivalent to applying mapl to the lower numbered axes and map2 to the higher numbered
axes, in parallel.

invertl
The value of the Invert attribute to be used with mapl.

invert2
The value of the Invert attribute to be used with map2.

Class Applicability:

CmpMap

If the supplied Mapping is a CmpMap, then mapl and map2 will be returned holding pointers
to the component Mappings used to create the CmpMap, either in series or parallel. Note,
changing the Invert attribute of either of the component Mappings using the returned pointers
will have no effect on the supplied CmpMap. This is because the CmpMap remembers and
uses the original settings of the Invert attributes (that is, the values of the Invert attributes
when the CmpMap was first created). These are the Invert values which are returned in
invertl and invert2.

TranMap

If the supplied Mapping is a TranMap, then mapl and map2 will be returned holding pointers
to the forward and inverse Mappings represented by the TranMap (zero will be returned for
series). Note, changing the Invert attribute of either of the component Mappings using the
returned pointers will have no effect on the supplied TranMap. This is because the TranMap
remembers and uses the original settings of the Invert attributes (that is, the values of the
Invert attributes when the TranMap was first created). These are the Invert values which are
returned in invertl and invert2.

Mapping
For any class of Mapping other than a CmpMap, mapl will be returned holding a clone of
the supplied Mapping pointer, and map2 will be returned holding a NULL pointer. Invertl
will be returned holding the current value of the Invert attribute for the supplied Mapping,
and invert2 will be returned holding zero.
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CmpFrame
If the supplied Mapping is a CmpFrame, then mapl and map2 will be returned holding
pointers to the component Frames used to create the CmpFrame. The component Frames
are considered to be in applied in parallel.

Frame
For any class of Frame other than a CmpFrame, mapl will be returned holding a clone of the
supplied Frame pointer, and map2 will be returned holding a NULL pointer.

Notes:

e The returned Invert values should be used in preference to the current values of the Invert
attribute in mapl and map2. This is because the attributes may have changed value since
the Mappings were combined.

e Any changes made to the component Mappings using the returned pointers will be reflected
in the supplied Mapping.

astDelFits Delete the current FITS card in a FitsChan astDelFits

Description: This function deletes the current FITS card from a FitsChan. The current card may be
selected using the Card attribute (if its index is known) or by using astFindFits (if only the FITS
keyword is known).

After deletion, the following card becomes the current card.

Synopsis: void astDelFits( AstFitsChan xthis )

Parameters:
this
Pointer to the FitsChan.
Notes:
e This function returns without action if the FitsChan is initially positioned at the "end-of-file"
(i.e. if the Card attribute exceeds the number of cards in the FitsChan).
e If there are no subsequent cards in the FitsChan, then the Card attribute is left pointing
at the "end-of-file" after deletion (i.e. is set to one more than the number of cards in the
FitsChan).
astDelete Delete an Object astDelete

Description: This function deletes an Object, freeing all resources associated with it and rendering any
remaining pointers to the Object invalid.

Note that deletion is unconditional, regardless of whether other pointers to the Object are still in
use (possibly within other Objects). A safer approach is to defer deletion, until all references to an
Object have expired, by using astBegin/astEnd (together with astClone and astAnnul if necessary).

Synopsis: AstObject *astDelete( AstObject xthis )

Parameters:

this
Pointer to the Object to be deleted.

Class Applicability:
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Object
This function applies to all Objects.

Returned Value:

astDelete()
A null Object pointer (AST__NULL) is always returned.

Notes:
e This function attempts to execute even if the AST error status is set on entry, although no
further error report will be made if it subsequently fails under these circumstances.
astDistance Calculate the distance between two astDistance

points in a Frame

Description: This function finds the distance between two points whose Frame coordinates are given.
The distance calculated is that along the geodesic curve that joins the two points.

For example, in a basic Frame, the distance calculated will be the Cartesian distance along the
straight line joining the two points. For a more specialised Frame describing a sky coordinate
system, however, it would be the distance along the great circle passing through two sky positions.

Synopsis: double astDistance( AstFrame xthis, const double pointl[], const double point2[]
)

Parameters:
this
Pointer to the Frame.

point1l
An array of double, with one element for each Frame axis (Naxes attribute) containing the
coordinates of the first point.

point2
An array of double, with one element for each Frame axis containing the coordinates of the
second point.

Returned Value:

astDistance
The distance between the two points.

Notes:

e This function will return a "bad" result value (AST__BAD) if any of the input coordinates
has this value.

e A "bad" value will also be returned if this function is invoked with the AST error status set,
or if it should fail for any reason.
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astDownsize Reduce the number of vertices in a astDownsize
Polygon

Description: This function returns a pointer to a new Polygon that contains a subset of the vertices in
the supplied Polygon. The subset is chosen so that the returned Polygon is a good approximation
to the supplied Polygon, within the limits specified by the supplied parameter values. That is, the
density of points in the returned Polygon is greater at points where the curvature of the boundary
of the supplied Polygon is greater.

Synopsis:  AstPolygon *xastDownsize( AstPolygon xthis, double maxerr, int maxvert )

Parameters:

this
Pointer to the Polygon.

maxerr
The maximum allowed discrepancy between the supplied and returned Polygons, expressed as
a geodesic distance within the Polygon’s coordinate frame. If this is zero or less, the returned
Polygon will have the number of vertices specified by maxvert.

maxvert
The maximum allowed number of vertices in the returned Polygon. If this is less than 3,
the number of vertices in the returned Polygon will be the minimum needed to achieve the
maximum discrepancy specified by maxerr.

Returned Value:

astDownsize()
Pointer to the new Polygon.

Notes:
o A null Object pointer (AST__NULL) will be returned if this function is invoked with the
AST error status set, or if it should fail for any reason.
astEBuf End the current graphical buffering context astEBuf

Description: This function ends the current graphics buffering context. It should match a corresponding
call to the astBBuf function.

Synopsis: void astEBuf( AstPlot xthis )

Parameters:
this
Pointer to the Plot.

Notes:

e The nature of the buffering is determined by the underlying graphics system (as defined by
the current grf module). Each call to this function simply invokes the astGEBuf function in
the grf module.
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astEllipse Create a Ellipse astEllipse

Description: This function creates a new Ellipse and optionally initialises its attributes.

A Ellipse is a Region which represents a elliptical area within the supplied 2-dimensional Frame.

Synopsis: AstEllipse *astEllipse( AstFrame xframe, int form, const double centre[2], const
double point1[2], const double point2[2], AstRegion *unc, const char xoptions,

)

Parameters:

frame
A pointer to the Frame in which the region is defined. It must have exactly 2 axes. A deep
copy is taken of the supplied Frame. This means that any subsequent changes made to the
Frame using the supplied pointer will have no effect the Region.

form
Indicates how the ellipse is described by the remaining parameters. A value of zero indicates
that the ellipse is specified by a centre position and two positions on the circumference. A
value of one indicates that the ellipse is specified by its centre position, the half-lengths of its
two axes, and the orientation of its first axis.

centre
An array of 2 doubles, containing the coordinates at the centre of the ellipse.

point1
An array of 2 doubles. If "form" is zero, this array should contain the coordinates of one of
the four points where an axis of the ellipse crosses the circumference of the ellipse. If "form"
is one, it should contain the lengths of semi-major and semi-minor axes of the ellipse, given
as geodesic distances within the Frame.

point2

An array of 2 doubles. If "form" is zero, this array should containing the coordinates at some
other point on the circumference of the ellipse, distinct from "point1". If "form" is one, the
first element of this array should hold the angle between the second axis of the Frame and the
first ellipse axis (i.e. the ellipse axis which is specified first in the "point1l" array), and the
second element will be ignored. The angle should be given in radians, measured positive in
the same sense as rotation from the positive direction of the second Frame axis to the positive
direction of the first Frame axis.

unc
An optional pointer to an existing Region which specifies the uncertainties associated with
the boundary of the Box being created. The uncertainty in any point on the boundary of
the Box is found by shifting the supplied "uncertainty" Region so that it is centred at the
boundary point being considered. The area covered by the shifted uncertainty Region then
represents the uncertainty in the boundary position. The uncertainty is assumed to be the
same for all points.
If supplied, the uncertainty Region must be of a class for which all instances are centro-
symetric (e.g. Box, Circle, Ellipse, etc.) or be a Prism containing centro-symetric component
Regions. A deep copy of the supplied Region will be taken, so subsequent changes to the
uncertainty Region using the supplied pointer will have no effect on the created Box. Alter-
natively, a NULL Object pointer may be supplied, in which case a default uncertainty is used
equivalent to a box 1.0E-6 of the size of the Box being created.
The uncertainty Region has two uses: 1) when the astOverlap function compares two Regions
for equality the uncertainty Region is used to determine the tolerance on the comparison, and
2) when a Region is mapped into a different coordinate system and subsequently simplified
(using astSimplify), the uncertainties are used to determine if the transformed boundary can
be accurately represented by a specific shape of Region.
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options
Pointer to a null-terminated string containing an optional comma-separated list of attribute
assignments to be used for initialising the new Ellipse. The syntax used is identical to that
for the astSet function and may include "printf" format specifiers identified by "%" symbols
in the normal way.

If the "options" string contains "%" format specifiers, then an optional list of additional
arguments may follow it in order to supply values to be substituted for these specifiers. The
rules for supplying these are identical to those for the astSet function (and for the C "printf"
function).

Returned Value:

astEllipse()
A pointer to the new Ellipse.

Notes:

e A null Object pointer (AST__NULL) will be returned if this function is invoked with the
AST error status set, or if it should fail for any reason.

astEllipsePars  Returns the geometric parameters  astEllipsePars

of an Ellipse

Description: This function returns the geometric parameters describing the supplied ellipse.

Synopsis:
double xangle, double p1[2], double p2[2] )

Parameters:

this

Notes:

void astEllipsePars( AstEllipse xthis, double centre[2], double *a, double xb,

Pointer to the Region.

centre
The coordinates of the Ellipse centre are returned in this arrays.

Returned holding the half-length of the first axis of the ellipse.

b

Returned holding the half-length of the second axis of the ellipse.

angle

If the coordinate system in which the Ellipse is defined has axes (X,Y), then "xangle" is
returned holding the angle from the positive direction of the Y axis to the first axis of the
ellipse, in radians. Positive rotation is in the same sense as rotation from the positive direction
of Y to the positive direction of X.

pl

An array in which to return the coordinates at one of the two ends of the first axis of the
ellipse. A NULL pointer can be supplied if these coordinates are not needed.

P2

An array in which to return the coordinates at one of the two ends of the second axis of the
ellipse. A NULL pointer can be supplied if these coordinates are not needed.
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e If the coordinate system represented by the Ellipse has been changed since it was first created,
the returned parameters refer to the new (changed) coordinate system, rather than the original
coordinate system. Note however that if the transformation from original to new coordinate
system is non-linear, the shape represented by the supplied Ellipse object may not be an
accurate ellipse.

e Values of AST__BAD are returned for the parameters without error if the ellipse is degenerate
or undefined.

astEmptyFits Delete all cards in a FitsChan astEmptyFits

Description: This function deletes all cards and associated information from a FitsChan.
Synopsis: void astEmptyFits( AstFitsChan xthis )

Parameters:

this
Pointer to the FitsChan.

Notes:
e This method simply deletes the cards currently in the FitsChan. Unlike astWriteFits, they
are not first written out to the sink function or sink file.
e Any Tables or warnings stored in the FitsChan are also deleted.
e This method attempt to execute even if an error has occurred previously.
astEnd End an AST context astEnd

Description: This macro invokes a function to end an AST context which was begun with a matching
invocation of astBegin. Any Object pointers created within this context will be annulled (just as if
astAnnul had been invoked) and will cease to be valid afterwards, unless they have previously been
exported using astExport or rendered exempt using astExempt. If annulling a pointer causes an
Object’s RefCount attribute to fall to zero (which happens when the last pointer to it is annulled),
then the Object will be deleted.

Synopsis:  void astEnd

Class Applicability:

Object
This macro applies to all Objects.

Notes:

e astEnd attempts to execute even if the AST error status is set.

e Contexts delimited by astBegin and astEnd may be nested to any depth.
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astEscapes Control whether graphical escape astEscapes
sequences are included in strings

Description: The Plot class defines a set of escape sequences which can be included within a text
string in order to control the appearance of sub-strings within the text. See the Escape attribute
for a description of these escape sequences. It is usually inappropriate for AST to return strings
containing such escape sequences when called by application code. For instance, an application
which displays the value of the Title attribute of a Frame usually does not want the displayed string
to include potentially long escape sequences which a human read would have difficuly interpreting.
Therefore the default behaviour is for AST to strip out such escape sequences when called by
application code. This default behaviour can be changed using this function.

Synopsis: int astEscapes( int new_value )

Parameters:

new_value
A flag which indicates if escapes sequences should be included in returned strings. If zero is
supplied, escape sequences will be stripped out of all strings returned by any AST function. If
a positive value is supplied, then any escape sequences will be retained in the value returned to
the caller. If a negative value is supplied, the current value of the flag will be left unchanged.

Class Applicability:
Object
This macro applies to all Objects.
Returned Value:

astEscapes
The value of the flag on entry to this function.

Notes:
e This function also controls whether the astStripEscapes function removes escape sequences
from the supplied string, or returns the supplied string without change.
e This function attempts to execute even if an error has already occurred.
astExempt Exempt an Object pointer from AST astExempt

context handling

Description: This function exempts an Object pointer from AST context handling, as implemented by
astBegin and astEnd. This means that the pointer will not be affected when astEnd is invoked and
will remain active until the end of the program, or until explicitly annulled using astAnnul.

If possible, you should avoid using this function when writing applications. It is provided mainly
for developers of other libraries, who may wish to retain references to AST Objects in internal data
structures, and who therefore need to avoid the effects of astBegin and astEnd.
Synopsis: void astExempt( AstObject *this )
Parameters:
this
Object pointer to be exempted from context handling.
Class Applicability:

Object
This function applies to all Objects.
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astExport Export an Object pointer to an outer context astExport

Description: This function exports an Object pointer from the current AST context into the context
that encloses the current one. This means that the pointer will no longer be annulled when the
current context is ended (with astEnd), but only when the next outer context (if any) ends.

Synopsis: void astExport( AstObject *this )

Parameters:
this
Object pointer to be exported.
Class Applicability:
Object
This function applies to all Objects.

Notes:

o It is only sensible to apply this function to pointers that have been created within (or exported
to) the current context and have not been rendered exempt using astExempt. Applying it to
an unsuitable Object pointer has no effect.

astFindFits Find a FITS card in a FitsChan by astFindFits
keyword

Description: This function searches for a card in a FitsChan by keyword. The search commences at
the current card (identified by the Card attribute) and ends when a card is found whose FITS
keyword matches the template supplied, or when the last card in the FitsChan has been searched.

If the search is successful (i.e. a card is found which matches the template), the contents of the
card are (optionally) returned and the Card attribute is adjusted to identify the card found or,
if required, the one following it. If the search is not successful, the function returns zero and the
Card attribute is set to the "end-of-file".

Synopsis:  int astFindFits( AstFitsChan xthis, const char *name, char card[ 81 ], int inc

)
Parameters:

this
Pointer to the FitsChan.

name
Pointer to a null-terminated character string containing a template for the keyword to be
found. In the simplest case, this should simply be the keyword name (the search is case
insensitive and trailing spaces are ignored). However, this template may also contain "field
specifiers" which are capable of matching a range of characters (see the "Keyword Templates"
section for details). In this case, the first card with a keyword which matches the template
will be found. To find the next FITS card regardless of its keyword, you should use the
template "%f".

card

An array of at least 81 characters (to allow room for a terminating null) in which the FITS
card which is found will be returned. If the search is not successful (or a NULL pointer is
given), a card will not be returned.
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inc
If this value is zero (and the search is successful), the FitsChan’s Card attribute will be set
to the index of the card that was found. If it is non-zero, however, the Card attribute will be
incremented to identify the card which follows the one found.

Returned Value:

astFindFits()
One if the search was successful, otherwise zero.

Examples:

result = astFindFits( fitschan, "%f", card, 1 );
Returns the current card in a FitsChan and advances the Card attribute to identify the card
that follows (the "%f" template matches any keyword).

result = astFindFits( fitschan, "BITPIX", card, 1 );
Searches a FitsChan for a FITS card with the "BITPIX" keyword and returns that card.
The Card attribute is then incremented to identify the card that follows it.

result = astFindFits( fitschan, "COMMENT", NULL, O );
Sets the Card attribute of a FitsChan to identify the next COMMENT card (if any). The

card itself is not returned.

result = astFindFits( fitschan, "CRVAL%1d", card, 1 );
Searches a FitsChan for the next card with a keyword of the form "CRVALi" (for example,
any of the keywords "CRVAL1", "CRVAL2" or "CRVAL3" would be matched). The card
found (if any) is returned, and the Card attribute is then incremented to identify the following
card (ready to search for another keyword with the same form, perhaps).

Notes:

e The search always starts with the current card, as identified by the Card attribute. To ensure
you search the entire contents of a FitsChan, you should first clear the Card attribute (using
astClear). This effectively "rewinds" the FitsChan.

o If a search is unsuccessful, the Card attribute is set to the "end-of-file" (i.e. to one more than
the number of cards in the FitsChan). No error occurs.

e A value of zero will be returned if this function is invoked with the AST error status set, or
if it should fail for any reason.

Keyword Templates:

The templates used to match FITS keywords are normally composed of literal characters, which
must match the keyword exactly (apart from case). However, a template may also contain "field
specifiers" which can match a range of possible characters. This allows you to search for keywords
that contain (for example) numbers, where the digits comprising the number are not known in
advance.

A field specifier starts with a "%" character. This is followed by an optional single digit (0 to 9)
specifying a field width. Finally, there is a single character which specifies the

type of character to be matched, as follows:

e "c": matches all upper case letters,
e "d": matches all decimal digits,

e "f": matches all characters which are permitted within a FITS keyword (upper case letters,
digits, underscores and hyphens).
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If the field width is omitted, the field specifier matches one or more characters. If the field width
is zero, it matches zero or more characters. Otherwise, it matches exactly the number of

characters specified. In addition to this:

e The template "%f" will match a blank FITS keyword consisting of 8 spaces (as well as
matching all other keywords).

o A template consisting of 8 spaces will match a blank keyword (only).

For example:

e The template "BitPix" will match the keyword "BITPIX" only.

e The template "crpix%1d" will match keywords consisting of "CRPIX" followed by one deci-
mal digit.

e The template "P%c" will match any keyword starting with "P" and followed by one or more
letters.

e The template "E%0f" will match any keyword beginning with "E".
e The template "%f" will match any keyword at all (including a blank one).

astFindFrame Find a coordinate system with astFindFrame
specified characteristics

Description: This function uses a "template" Frame to search another Frame (or FrameSet) to identify
a coordinate system which has a specified set of characteristics. If a suitable coordinate system
can be found, the function returns a pointer to a FrameSet which describes the required coordinate
system and how to convert coordinates to and from it.

This function is provided to help answer general questions about coordinate systems, such as
typically arise when coordinate information is imported into a program as part of an initially
unknown dataset. For example:

e Is there a wavelength scale?
o [s there a 2-dimensional coordinate system?
o [s there a celestial coordinate system?

e Can I plot the data in ecliptic coordinates?

You can also use this function as a means of reconciling a user’s preference for a particular coor-
dinate system (for example, what type of axes to draw) with what is actually possible given the
coordinate information available.

To perform a search, you supply a "target" Frame (or FrameSet) which represents the set of
coordinate systems to be searched. If a basic Frame is given as the target, this set of coordinate
systems consists of the one described by this Frame, plus all other "virtual" coordinate systems
which can potentially be reached from it by applying built-in conversions (for example, any of the
celestial coordinate conversions known to the AST library would constitute a "built-in" conversion).
If a FrameSet is given as the target, the set of coordinate systems to be searched consists of the
union of those represented by all the individual Frames within it.

To select from this large set of possible coordinate systems, you supply a "template" Frame which
is an instance of the type of Frame you are looking for. Effectively, you then ask the function to
"find a coordinate system that looks like this".

You can make your request more or less specific by setting attribute values for the template Frame.
If a particular attribute is set in the template, then the function will only find coordinate systems
which have exactly the same value for that attribute. If you leave a template attribute un-set,
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Synopsis:
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however, then the function has discretion about the value the attribute should have in any coor-
dinate system it finds. The attribute will then take its value from one of the actual (rather than
virtual) coordinate systems in the target. If the target is a FrameSet, its Current attribute will be
modified to indicate which of its Frames was used for this purpose.

The result of this process is a coordinate system represented by a hybrid Frame which acquires
some attributes from the template (but only if they were set) and the remainder from the target.
This represents the "best compromise" between what you asked for and what was available. A
Mapping is then generated which converts from the target coordinate system to this hybrid one,
and the returned FrameSet encapsulates all of this information.

AstFrameSet *astFindFrame( AstFrame xtarget, AstFrame xtemplate, const char

Parameters:

target

Pointer to the target Frame (or FrameSet).

Note that if a FrameSet is supplied (and a suitable coordinate system is found), then its
Current attribute will be modified to indicate which Frame was used to obtain attribute
values which were not specified by the template. This Frame will, in some sense, represent
the "closest" non-virtual coordinate system to the one you requested.

template

Pointer to the template Frame, which should be an instance of the type of Frame you wish
to find. If you wanted to find a Frame describing a celestial coordinate system, for example,
then you might use a SkyFrame here. See the "Examples" section for more ideas.

domainlist

Pointer to a null-terminated character string containing a comma-separated list of Frame
domains. This may be used to establish a priority order for the different types of coordinate
system that might be found.

The function will first try to find a suitable coordinate system whose Domain attribute equals
the first domain in this list. If this fails, the second domain in the list will be used, and so
on, until a result is obtained. A blank domain (e.g. two consecutive commas) indicates that
any coordinate system is acceptable (subject to the template) regardless of its domain.

This list is case-insensitive and all white space is ignored. If you do not wish to restrict the
domain in this way, you should supply an empty string.

Class Applicability:

Frame

This function applies to all Frames.

FrameSet

If the target is a FrameSet, the possibility exists that several of the Frames within it might
be matched by the template. Unless the choice is sufficiently restricted by the "domainlist"
string, the sequence in which Frames are searched can then become important. In this case,
the search proceeds as follows:

e FEach field in the "domainlist" string is considered in turn.

e An attempt is made to match the template to each of the target’s Frames in the order:
(1) the current Frame, (2) the base Frame, (3) each remaining Frame in the order of
being added to the target FrameSet.

e Generally, the first match found is used. However, the Mapping between the target
coordinate system and the resulting Frame is also examined. Preference is given to cases
where both the forward and inverse transformations are defined (as indicated by the
TranForward and Tranlnverse attributes). If only one transformation is defined, the
forward one is preferred.

*domainlist
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e If a match is found and the domain of the resulting Frame also matches the current
"domainlist" field, it is accepted. Otherwise, the next "domainlist" field is considered
and the process repeated.

If a suitable coordinate system is found, the Current attribute of the target FrameSet will be
modified on exit to identify the Frame whose match with the target was eventually accepted.

Value:

astFindFrame()

Examples:

If the search is successful, the function returns a pointer to a FrameSet which contains the
Frame found and a description of how to convert to (and from) the coordinate system it
represents. Otherwise, a null Object pointer (AST__NULL) is returned without error.

If a FrameSet is returned, it will contain two Frames. Frame number 1 (its base Frame)
represents the target coordinate system and will be the same as the (base Frame of the)
target. Frame number 2 (its current Frame) will be a Frame representing the coordinate
system which the function found. The Mapping which inter-relates these two Frames will
describe how to convert between their respective coordinate systems.

Note that a FrameSet may be used both as a Mapping and as a Frame. If the result is used
as a Mapping (e.g. with astTran2), then it provides a means of converting coordinates from
the target coordinate system into the new coordinate system that was found (and vice versa
if its inverse transformation is selected). If it is used as a Frame, its attributes will describe
the new coordinate system.

result = astFindFrame( target, astFrame( 3, "" ), "" );

Searches for a 3-dimensional coordinate system in the target Frame (or FrameSet). No at-
tributes have been set in the template Frame (created by astFrame), so no restriction has
been placed on the required coordinate system, other than that it should have 3 dimensions.
The first suitable Frame found will be returned as part of the "result" FrameSet.

result = astFindFrame( target, astSkyFrame( "" ), "" );

Searches for a celestial coordinate system in the target Frame (or FrameSet). The type of
celestial coordinate system is unspecified, so astFindFrame will return the first one found as
part of the "result" FrameSet. If the target is a FrameSet, then its Current attribute will be
updated to identify the Frame that was used.

If no celestial coordinate system can be found, a value of AST__NULL will be returned
without error.

result = astFindFrame( target, astSkyFrame( "MaxAxes=100" ), "" );

This is like the last example, except that in the event of the target being a CmpFrame,
the component Frames encapsulated by the CmpFrame will be searched for a SkyFrame. If
found, the returned Mapping will included a PermMap which selects the required axes from
the target CmpFrame.

This is acomplished by setting the MaxAxes attribute of the template SkyFrame to a large
number (larger than or equal to the number of axes in the target CmpFrame). This allows
the SkyFrame to be used as a match for Frames containing from 2 to 100 axes.

result = astFindFrame( target, astSkyFrame( "System=FK5" ), "" );

Searches for an equatorial (FK5) coordinate system in the target. The Equinox value for the
coordinate system has not been specified, so will be obtained from the target. If the target
is a FrameSet, its Current attribute will be updated to indicate which SkyFrame was used to
obtain this value.

result = astFindFrame( target, astFrame( 2, "" ), "sky,pixel," );

Searches for a 2-dimensional coordinate system in the target. Initially, a search is made for
a suitable coordinate system whose Domain attribute has the value "SKY". If this search
fails, a search is then made for one with the domain "PIXEL". If this also fails, then any
2-dimensional coordinate system is returned as part of the "result" FrameSet.
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Only if no 2-dimensional coordinate systems can be reached by applying built-in conversions
to any of the Frames in the target will a value of AST__NULL be returned.

result = astFindFrame( target, astFrame( 1, "Domain=WAVELENGTH" ), ""

);
Searches for any 1-dimensional coordinate system in the target which has the domain "WAVE-
LENGTH".

result = astFindFrame( target, astFrame( 1, "" ), "wavelength" );
This example has exactly the same effect as that above. It illustrates the equivalence of the
template’s Domain attribute and the fields in the "domainlist" string.

result = astFindFrame( target, astFrame( 1, "MaxAxes=3" ), "" );
This is a more advanced example which will search for any coordinate system in the target
having 1, 2 or 3 dimensions. The Frame returned (as part of the "result" FrameSet) will
always be 1-dimensional, but will be related to the coordinate system that was found by a
suitable Mapping (e.g. a PermMap) which simply extracts the first axis.
If we had wanted a Frame representing the actual (1, 2 or 3-dimensional) coordinate system
found, we could set the PreserveAxes attribute to a non-zero value in the template.

result = astFindFrame( target, astSkyFrame( "Permute=0" ), "" );
Searches for any celestial coordinate system in the target, but only finds one if its axes
are in the conventional (longitude,latitude) order and have not been permuted (e.g. with
astPermAxes).

Notes:

e The Mapping represented by the returned FrameSet results in alignment taking place in the
coordinate system specified by the AlignSystem attribute of the "template" Frame. See the
description of the AlignSystem attribute for further details.

e Beware of setting the Domain attribute of the template and then using a "domainlist" string
which does not include the template’s domain (or a blank field). If you do so, no coordinate
system will be found.

e A null Object pointer (AST__NULL) will be returned if this function is invoked with the
AST error status set, or if it should fail for any reason.

More on Using Templates:

A Frame (describing a coordinate system) will be found by this function if (a) it is "matched" by
the template you supply, and (b) the value of its Domain attribute appears in the "domainlist"
string (except that a blank field in this string permits any domain). A successful match by the
template depends on a number of criteria, as outlined below:

e In general, a template will only match another Frame which belongs to the same class as the
template, or to a derived (more specialised) class. For example, a SkyFrame template will
match any other SkyFrame, but will not match a basic Frame. Conversely, a basic Frame
template will match any class of Frame.

e The exception to this is that a Frame of any class can be used to match a CmpFrame, if that
CmpFrame contains a Frame of the same class as the template. Note however, the MaxAxes
and MinAxes attributes of the template must be set to suitable values to allow it to match
the CmpFrame. That is, the MinAxes attribute must be less than or equal to the number of
axes in the target, and the MaxAxes attribute must be greater than or equal to the number
of axes in the target.

e If using a CmpFrame as a template frame, the MinAxes and MaxAxes for the template
are determined by the MinAxes and MaxAxes values of the component Frames within the
template. So if you want a template CmpFrame to be able to match Frames with different
numbers of axes, then you must set the MaxAxes and/or MinAxes attributes in the component
template Frames, before combining them together into the template CmpFrame.
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e If a template has a value set for any of its main attributes, then it will only match Frames
which have an identical value for that attribute (or which can be transformed, using a built-in
conversion, so that they have the required value for that attribute). If any attribute in the
template is un-set, however, then Frames are matched regardless of the value they may have
for that attribute. You may therefore make a template more or less specific by choosing
the attributes for which you set values. This requirement does not apply to ’descriptive’
attributes such as titles, labels, symbols, etc.

e An important application of this principle involves the Domain attribute. Setting the Domain
attribute of the template has the effect of restricting the search to a particular type of Frame
(with the domain you specify). Conversely, if the Domain attribute is not set in the template,
then the domain of the Frame found is not relevant, so all Frames are searched. Note that the
"domainlist" string provides an alternative way of restricting the search in the same manner,
but is a more convenient interface if you wish to search automatically for another domain if
the first search fails.

e Normally, a template will only match a Frame which has the same number of axes as itself.
However, for some classes of template, this default behaviour may be changed by means of
the MinAxes, MaxAxes and MatchEnd attributes. In addition, the behaviour of a template
may be influenced by its Permute and PreserveAxes attributes, which control whether it
matches Frames whose axes have been permuted, and whether this permutation is retained
in the Frame which is returned (as opposed to returning the axes in the order specified in
the template, which is the default behaviour). You should consult the descriptions of these
attributes for details of this more advanced use of templates.

astFitsChan Create a FitsChan astFitsChan

Description: This function creates a new FitsChan and optionally initialises its attributes.

A FitsChan is a specialised form of Channel which supports I/O operations involving the use of
FITS (Flexible Image Transport System) header cards. Writing an Object to a FitsChan (using
astWrite) will, if the Object is suitable, generate a description of that Object composed of FITS
header cards, and reading from a FitsChan will create a new Object from its FITS header card
description.

While a FitsChan is active, it represents a buffer which may contain zero or more 80-character
"header cards" conforming to FITS conventions. Any sequence of FITS-conforming header cards
may be stored, apart from the "END" card whose existence is merely implied. The cards may be
accessed in any order by using the FitsChan’s integer Card attribute, which identifies a "current"
card, to which subsequent operations apply. Searches based on keyword may be performed (using
astFindFits), new cards may be inserted (astPutFits, astPutCards, astSetFits<X>) and existing
ones may be deleted (astDelFits) or changed (astSetFits<X>).

When you create a FitsChan, you have the option of specifying "source" and "sink" functions
which connect it to external data stores by reading and writing FITS header cards. If you provide
a source function, it is used to fill the FitsChan with header cards when it is accessed for the first
time. If you do not provide a source function, the FitsChan remains empty until you explicitly
enter data into it (e.g. using astPutFits, astPutCards, astWrite or by using the SourceFile attribute
to specifying a text file from which headers should be read). When the FitsChan is deleted, any
remaining header cards in the FitsChan can be saved in either of two ways: 1) by specifying a
value for the SinkFile attribute (the name of a text file to which header cards should be written),
or 2) by providing a sink function (used to to deliver header cards to an external data store). If
you do not provide a sink function or a value for SinkFile, any header cards remaining when the
FitsChan is deleted will be lost, so you should arrange to extract them first if necessary (e.g. using
astFindFits or astRead).

Coordinate system information may be described using FITS header cards using several different
conventions, termed "encodings". When an AST Object is written to (or read from) a FitsChan,
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the value of the FitsChan’s Encoding attribute determines how the Object is converted to (or from)
a description involving FITS header cards. In general, different encodings will result in different
sets of header cards to describe the same Object. Examples of encodings include the DSS encoding
(based on conventions used by the STScl Digitised Sky Survey data), the FITS-WCS encoding
(based on a proposed FITS standard) and the NATIVE encoding (a near loss-less way of storing
AST Objects in FITS headers).

The available encodings differ in the range of Objects they can represent, in the number of Object
descriptions that can coexist in the same FitsChan, and in their accessibility to other (external)
astronomy applications (see the Encoding attribute for details). Encodings are not necessarily
mutually exclusive and it may sometimes be possible to describe the same Object in several ways
within a particular set of FITS header cards by using several different encodings.

The detailed behaviour of astRead and astWrite, when used with a FitsChan, depends on the
encoding in use. In general, however, all use of astRead is destructive, so that FITS header cards
are consumed in the process of reading an Object, and are removed from the FitsChan (this deletion
can be prevented for specific cards by calling the astRetainFits function).

If the encoding in use allows only a single Object description to be stored in a FitsChan (e.g. the
DSS, FITS-WCS and FITS-IRAF encodings), then write operations using astWrite will over-write
any existing Object description using that encoding. Otherwise (e.g. the NATIVE encoding),
multiple Object descriptions are written sequentially and may later be read back in the same
sequence.

char % ), const char xoptions, ... )

Parameters:

source
Pointer to a source function which takes no arguments and returns a pointer to a null-
terminated string. This function will be used by the FitsChan to obtain input FITS header
cards. On each invocation, it should read the next input card from some external source
(such as a FITS file), and return a pointer to the (null-terminated) contents of the card. It
should return a NULL pointer when there are no more cards to be read.

If "source" is NULL, the FitsChan will remain empty until cards are explicitly stored in it
(e.g. using astPutCards, astPutFits or via the SourceFile attribute).

sink
Pointer to a sink function that takes a pointer to a null-terminated string as an argument and
returns void. If no value has been set for the SinkFile attribute, this function will be used
by the FitsChan to deliver any FITS header cards it contains when it is finally deleted. On
each invocation, it should deliver the contents of the character string passed to it as a FITS
header card to some external data store (such as a FITS file).
If "sink" is NULL, and no value has been set for the SinkFile attribute, the contents of the
FitsChan will be lost when it is deleted.

options
Pointer to a null-terminated string containing an optional comma-separated list of attribute
assignments to be used for initialising the new FitsChan. The syntax used is identical to that
for the astSet function and may include "printf" format specifiers identified by "%" symbols
in the normal way.

If the "options" string contains "%" format specifiers, then an optional list of additional
arguments may follow it in order to supply values to be substituted for these specifiers. The
rules for supplying these are identical to those for the astSet function (and for the C "printf"
function).

Note, the FITSCHAN_OPTIONS environment variable may be used to specify default options
for all newly created FitsChans.

AstFitsChan *astFitsChan( const char *(x source)( void ), void (% sink) ( const
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Returned Value:
astFitsChan()
A pointer to the new FitsChan.

Notes:

e No FITS "END" card will be written via the sink function. You should add this card yourself
after the FitsChan has been deleted.

e A null Object pointer (AST__NULL) will be returned if this function is invoked with the
AST error status set, or if it should fail for any reason.

Status Handling:

The protected interface to this function includes an extra parameter at the end of the parameter
list descirbed above. This parameter is a pointer to the integer inherited status variable: "int
*status".

astFitsTable Create a FitsTable astFitsTable

Description: This function creates a new FitsTable and optionally initialises its attributes.

The FitsTable class is a representation of a FITS binary table. It inherits from the Table class.
The parent Table is used to hold the binary data of the main table, and a FitsChan is used to hold
the FITS header. Note, there is no provision for binary data following the main table (such data
is referred to as a "heap" in the FITS standard).

Note - it is not recommended to use the FitsTable class to store very large tables.
Synopsis: AstFitsTable xastFitsTable( AstFitsChan xheader, const char *optiomns, ... )

Parameters:

header
Pointer to an optional FitsChan containing headers to be stored in the FitsTable. NULL may
be supplied if the new FitsTable is to be left empty. If supplied, and if the headers describe
columns of a FITS binary table, then equivalent (empty) columns are added to the FitsTable.
Each column has the same index in the FitsTable that it has in the supplied header.
options
Pointer to a null-terminated string containing an optional comma-separated list of attribute
assignments to be used for initialising the new FitsTable. The syntax used is identical to that
for the astSet function and may include "printf" format specifiers identified by "%" symbols
in the normal way.

If the "options" string contains "%" format specifiers, then an optional list of additional
arguments may follow it in order to supply values to be substituted for these specifiers. The
rules for supplying these are identical to those for the astSet function (and for the C "printf"
function).
Returned Value:
astFitsTable()
A pointer to the new FitsTable.

Notes:

e A null Object pointer (AST__NULL) will be returned if this function is invoked with the
AST error status set, or if it should fail for any reason.
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Status Handling:

The protected interface to this function includes an extra parameter at the end of the parameter
list described above. This parameter is a pointer to the integer inherited status variable: "int
*status".

astFluxFrame Create a FluxFrame astFluxFrame

Description: This function creates a new FluxFrame and optionally initialises its attributes.

A FluxFrame is a specialised form of one-dimensional Frame which represents various systems used
to represent the signal level in an observation. The particular coordinate system to be used is
specified by setting the FluxFrame’s System attribute qualified, as necessary, by other attributes
such as the units, etc (see the description of the System attribute for details).

All flux values are assumed to be measured at the same frequency or wavelength (as given by the
SpecVal attribute). Thus this class is more appropriate for use with images rather than spectra.

Synopsis: AstFluxFrame *astFluxFrame( double specval, AstSpecFrame *specfrm, const char
xoptions, ... )

Parameters:
specval

The spectral value to which the flux values refer, given in the spectral coordinate system
specified by "specfrm". The value supplied for the "specval" parameter becomes the default
value for the SpecVal attribute. A value of AST__BAD may be supplied if the spectral
position is unknown, but this may result in it not being possible for the astConvert function
to determine a Mapping between the new FluxFrame and some other FluxFrame.

specfrm
A pointer to a SpecFrame describing the spectral coordinate system in which the "specval"
parameter is given. A deep copy of this object is taken, so any subsequent changes to the
SpecFrame using the supplied pointer will have no effect on the new FluxFrame. A NULL
pointer can be supplied if AST__BAD is supplied for "specval".

options
Pointer to a null-terminated string containing an optional comma-separated list of attribute
assignments to be used for initialising the new FluxFrame. The syntax used is identical to that
for the astSet function and may include "printf" format specifiers identified by "%" symbols
in the normal way. If no initialisation is required, a zero-length string may be supplied.

If the "options" string contains "%" format specifiers, then an optional list of additional
arguments may follow it in order to supply values to be substituted for these specifiers. The
rules for supplying these are identical to those for the astSet function (and for the C "printf"
function).

Returned Value:

astFluxFrame()
A pointer to the new FluxFrame.

Notes:

e When conversion between two FluxFrames is requested (as when supplying FluxFrames to
astConvert), account will be taken of the nature of the flux coordinate systems they represent,
together with any qualifying attribute values, including the AlignSystem attribute. The
results will therefore fully reflect the relationship between positions measured in the two
systems. In addition, any difference in the Unit attributes of the two systems will also be
taken into account.
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e A null Object pointer (AST__NULL) will be returned if this function is invoked with the
AST error status set, or if it should fail for any reason.

astFormat Format a coordinate value for a Frame axis astFormat

Description: This function returns a pointer to a string containing the formatted (character) version
of a coordinate value for a Frame axis. The formatting applied is determined by the Frame’s
attributes and, in particular, by any Format attribute string that has been set for the axis. A
suitable default format (based on the Digits attribute value) will be applied if necessary.

Synopsis: const char kastFormat( AstFrame xthis, int axis, double value )

Parameters:
this
Pointer to the Frame.

axis
The number of the Frame axis for which formatting is to be performed (axis numbering starts
at 1 for the first axis).

value
The coordinate value to be formatted.
Returned Value:
astFormat()

A pointer to a null-terminated string containing the formatted value.

Notes:

e The returned pointer is guaranteed to remain valid and the string to which it points will
not be over-written for a total of 50 successive invocations of this function. After this, the
memory containing the string may be re-used, so a copy of the string should be made if it is
needed for longer than this.

o A formatted value may be converted back into a numerical (double) value using astUnformat.

e A NULL pointer will be returned if this function is invoked with the AST error status set, or
if it should fail for any reason.

astFrame Create a Frame astFrame

Description: This function creates a new Frame and optionally initialises its attributes.

A Frame is used to represent a coordinate system. It does this in rather the same way that a frame
around a graph describes the coordinate space in which data are plotted. Consequently, a Frame
has a Title (string) attribute, which describes the coordinate space, and contains axes which in
turn hold information such as Label and Units strings which are used for labelling (e.g.) graphical
output. In general, however, the number of axes is not restricted to two.

Functions are available for converting Frame coordinate values into a form suitable for display, and
also for calculating distances and offsets between positions within the Frame.

Frames may also contain knowledge of how to transform to and from related coordinate systems.
Synopsis: AstFrame *astFrame( int naxes, const char *options, ... )

Parameters:
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naxes
The number of Frame axes (i.e. the number of dimensions of the coordinate space which the
Frame describes).

options
Pointer to a null-terminated string containing an optional comma-separated list of attribute
assignments to be used for initialising the new Frame. The syntax used is identical to that
for the astSet function and may include "printf" format specifiers identified by "%" symbols
in the normal way. If no initialisation is required, a zero-length string may be supplied.

If the "options" string contains "%" format specifiers, then an optional list of additional
arguments may follow it in order to supply values to be substituted for these specifiers. The
rules for supplying these are identical to those for the astSet function (and for the C "printf"
function).

Returned Value:
astFrame()
A pointer to the new Frame.
Examples:

frame = astFrame( 2, "Title=Energy Spectrum: Plot %d", n );
Creates a new 2-dimensional Frame and initialises its Title attribute to the string "Energy
Spectrum: Plot <n>", where <n> takes the value of the int variable "n".

frame = astFrame( 2, "Label(1)=Energy, Label(2)=Response" );
Creates a new 2-dimensional Frame and initialises its axis Label attributes to suitable string

values.
Notes:
e A null Object pointer (AST__NULL) will be returned if this function is invoked with the
AST error status set, or if it should fail for any reason.
astFrameSet Create a FrameSet astFrameSet

Description: This function creates a new FrameSet and optionally initialises its attributes.

A FrameSet consists of a set of one or more Frames (which describe coordinate systems), connected
together by Mappings (which describe how the coordinate systems are inter-related). A FrameSet
makes it possible to obtain a Mapping between any pair of these Frames (i.e. to convert between
any of the coordinate systems which it describes). The individual Frames are identified within the
FrameSet by an integer index, with Frames being numbered consecutively from one as they are
added to the FrameSet.

Every FrameSet has a "base" Frame and a "current" Frame (which are allowed to be the same).
Any of the Frames may be nominated to hold these positions, and the choice is determined by
the values of the FrameSet’s Base and Current attributes, which hold the indices of the relevant
Frames. By default, the first Frame added to a FrameSet is its base Frame, and the last one added
is its current Frame.

The base Frame describes the "native" coordinate system of whatever the FrameSet is used to
calibrate (e.g. the pixel coordinates of an image) and the current Frame describes the "apparent"
coordinate system in which it should be viewed (e.g. displayed, etc.). Any further Frames represent
a library of alternative coordinate systems, which may be selected by making them current.

When a FrameSet is used in a context that requires a Frame, (e.g. obtaining its Title value, or
number of axes), the current Frame is used. A FrameSet may therefore be used in place of its
current Frame in most situations.
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When a FrameSet is used in a context that requires a Mapping, the Mapping used is the one
between its base Frame and its current Frame. Thus, a FrameSet may be used to convert "native"
coordinates into "apparent" ones, and vice versa. Like any Mapping, a FrameSet may also be
inverted (see astInvert), which has the effect of interchanging its base and current Frames and
hence of reversing the Mapping between them.

Regions may be added into a FrameSet (since a Region is a type of Frame), either explicitly or
as components within CmpFrames. In this case the Mapping between a pair of Frames within a
FrameSet will include the effects of the clipping produced by any Regions included in the path
between the Frames.

Synopsis:  AstFrameSet xastFrameSet( AstFrame xframe, const char *optiomns, ... )

Parameters:

frame
Pointer to the first Frame to be inserted into the FrameSet. This initially becomes both
the base and the current Frame. (Further Frames may be added using the astAddFrame
function.)

options
Pointer to a null-terminated string containing an optional comma-separated list of attribute
assignments to be used for initialising the new FrameSet. The syntax used is identical to that
for the astSet function and may include "printf" format specifiers identified by "%" symbols
in the normal way. If no initialisation is required, a zero-length string may be supplied.

If the "options" string contains "%" format specifiers, then an optional list of additional
arguments may follow it in order to supply values to be substituted for these specifiers. The
rules for supplying these are identical to those for the astSet function (and for the C "printf"
function).

Returned Value:

astFrameSet()
A pointer to the new FrameSet.

Notes:

o If a pointer to an existing FrameSet is given for the "frame" parameter, then the new FrameSet
will (as a special case) be initialised to contain the same Frames and Mappings, and to have
the same attribute values, as the one supplied. This process is similar to making a copy of a
FrameSet (see astCopy), except that the Frames and Mappings contained in the original are
not themselves copied, but are shared by both FrameSets.

o A null Object pointer (AST__NULL) will be returned if this function is invoked with the
AST error status set, or if it should fail for any reason.

astFromString Re-create an Object from an astFromString
in-memory serialisation

Description: This function returns a pointer to a new Object created from the supplied text string,
which should have been created by astToString.

Synopsis:  AstObject xastFromString( const char *string )

Parameters:

string
Pointer to a text string holding an Object serialisation created previously by astToString.
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Returned Value:

astFromString()
Pointer to a new Object created from the supplied serialisation, or NULL if the serialisation
was invalid, or an error occurred.

astGenCurve Draw a generalized curve astGenCurve

Description: This function draws a general user-defined curve defined by the supplied Mapping. Note
that the curve is transformed into graphical coordinate space for plotting, so that a straight line in
physical coordinates may result in a curved line being drawn if the Mapping involved is non-linear.
Any discontinuities in the Mapping between physical and graphical coordinates are catered for, as
is any clipping established using astClip.

If you need to draw simple straight lines (geodesics), astCurve or astPolyCurve will usually be
easier to use and faster.

Synopsis: void astGenCurve( AstPlot xthis, astMapping smap )

Parameters:

this
Pointer to the Plot.

map
Pointer to a Mapping. This Mapping should have 1 input coordinate representing offset along
the required curve, normalized so that the start of the curve is at offset 0.0, and the end of
the curve is at offset 1.0. Note, this offset does not need to be linearly related to distance
along the curve. The number of output coordinates should equal the number of axes in the
current Frame of the Plot. The Mapping should map a specified offset along the curve, into
the corresponding coordinates in the current Frame of the Plot. The inverse transformation
need not be defined.

Notes:

e An error results if the base Frame of the Plot is not 2-dimensional.

e An error also results if the transformation between the current and base Frames of the Plot
is not defined (i.e. the Plot’s TranInverse attribute is zero).

astGet<X> Get an attribute value for an Object astGet<X>

Description: This is a family of functions which return a specified attribute value for an Object using
one of several different data types. The type is selected by replacing <X> in the function name
by C, D, F, I or L, to obtain a result in const char* (i.e. string), double, float, int, or long format,
respectively.

If possible, the attribute value is converted to the type you request. If conversion is not possible,
an error will result.

Synopsis: <X>type astGet<X>( AstObject xthis, const char *attrib )

Parameters:
this
Pointer to the Object.
attrib

Pointer to a null-terminated string containing the name of the attribute whose value is re-
quired.
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Class Applicability:

Object
These functions apply to all Objects.

Returned Value:

astGet<X>()
The attribute value, in the data type corresponding to <X> (or, in the case of astGetC, a
pointer to a constant null-terminated character string containing this value).

Examples:

printf ( "RefCount = %d\n", astGetI( z, "RefCount" ) );
Prints the RefCount attribute value for Object "z" as an int.

title = astGetC( axis, "Title" );
Obtains a pointer to a null-terminated character string containing the Title attribute of
Object "axis".

Notes:

e Attribute names are not case sensitive and may be surrounded by white space.

e An appropriate "null" value will be returned if this function is invoked with the AST error
status set, or if it should fail for any reason. This null value is zero for numeric values and
NULL for pointer values.

e The pointer returned by astGetC is guaranteed to remain valid and the string to which it
points will not be over-written for a total of 50 successive invocations of this function. After
this, the memory containing the string may be re-used, so a copy of the string should be
made if it is needed for longer than this.

astGetActiveUnit Determines how the Unit astGetActiveUnit
attribute will be used

Description: This function returns the current value of the ActiveUnit flag for a Frame. See the
description of the astSetActiveUnit function for a description of the ActiveUnit flag.

Synopsis: int astGetActiveUnit( AstFrame xthis )

Parameters:

this
Pointer to the Frame.

Returned Value:

astGetActiveUnit
The current value of the ActiveUnit flag.

Notes:

e A zero value will be returned if this function is invoked with the AST error status set, or if
it should fail for any reason.
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astGetColumnData Retrieve all the data astGetColumnData
values stored in a
column

Description: This function copies all data values from a named column into a supplied buffer

Synopsis: void astGetColumnData( AstFitsTable xthis, const char *column, float fnull, double
dnull, size_t mxsize, void *coldata, int *nelem )

Parameters:

this
Pointer to the FitsTable.

column
The character string holding the name of the column. Trailing spaces are ignored.

fnull
The value to return in "coldata" for any cells for which no value has been stored in the Fit-
sTable. Ignored if the column’s data type is not AST__FLOATTYPE. Supplying AST__NANF
will cause a single precision IEEE NaN value to be used.

dnull
The value to return in "coldata" for any cells for which no value has been stored in the Fit-
sTable. Ignored if the column’s data type is not AST__DOUBLETYPE. Supplying AST__NAN
will cause a double precision IEEE NaN value to be used.

mxsize
The size of the "coldata" array, in bytes. The amount of memory needed to hold the data
from a column may be determined using astColumnSize. If the supplied array is too small
to hold all the column data, trailing column values will be omitted from the returned array,
but no error will be reported.

coldata
A pointer to an area of memory in which to return the data values currently stored in the
column. The values are stored in row order. If the column holds non-scalar values, the
elements of each value are stored in "Fortran" order. No data type conversion is performed
- the data type of each returned value is the data type associated with the column when the
column was added to the table. If the column holds strings, the returned strings will be null
terminated. Any excess room at the end of the array will be left unchanged.

nelem
The number of elements returned in the "coldata" array. This is the product of the number
of rows returned and the number of elements in each column value.

Notes:

e The "fnull" and "dnull" parameters specify the value to be returned for any empty cells
within columns holding floating point values. For columns holding integer values, the value
returned for empty cells is the value returned by the astColumNull function. For columns
holding string values, the ASCII NULL character is returned for empty cells.

astGetFits<X> Get a named keyword value astGetFits<X>
from a FitsChan

Description: This is a family of functions which gets a value for a named keyword, or the value of
the current card, from a FitsChan using one of several different data types. The data type of the
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returned value is selected by replacing <X> in the function name by one of the following strings
representing the recognised FITS data types:

e CF - Complex floating point values.
e CI - Complex integer values.
e I - Floating point values.

e [ - Integer values.

L - Logical (i.e. boolean) values.

S - String values.
e CN - A "CONTINUE" value, these are treated like string values, but are encoded without
an equals sign.
The data type of the "value" parameter
depends on <X> as follows:

e CF - "double %" (a pointer to a 2 element array to hold the real and imaginary parts of the
complex value).

CI - "int *" (a pointer to a 2 element array to hold the real and imaginary parts of the
complex value).

F - "double x".

e [ - "int x".

o [ - "int x".

S - "char #*" (a pointer to a static "char" array is returned at the location given by the "value"
parameter, Note, the stored string may change on subsequent invocations of astGetFitsS so
a permanent copy should be taken of the string if necessary).

e CN - Like"S".
Synopsis: int astGetFits<X>( AstFitsChan xthis, const char *name, <X>type xvalue )

Parameters:

this
Pointer to the FitsChan.

name
Pointer to a null-terminated character string containing the FITS keyword name. This may
be a complete FITS header card, in which case the keyword to use is extracted from it. No
more than 80 characters are read from this string. If NULL is supplied, the value of the
current card is returned.

value
A pointer to a buffer to receive the keyword value. The data type depends on <X> as
described above. The conents of the buffer on entry are left unchanged if the keyword is not
found.

Returned Value:

astGetFits<X><X>()
A value of zero is returned if the keyword was not found in the FitsChan (no error is reported).
Otherwise, a value of one is returned.

Notes:
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If a name is supplied, the card following the current card is checked first. If this is not the
required card, then the rest of the FitsChan is searched, starting with the first card added to
the FitsChan. Therefore cards should be accessed in the order they are stored in the FitsChan
(if possible) as this will minimise the time spent searching for cards.

If the requested card is found, it becomes the current card, otherwise the current card is left
pointing at the "end-of-file".

If the stored keyword value is not of the requested type, it is converted into the requested
type.

If the keyword is found in the FitsChan, but has no associated value, an error is reported.
If necessary, the astTestFits function can be used to determine if the keyword has a defined
value in the FitsChan prior to calling this function.

An error will be reported if the keyword name does not conform to FITS requirements.
Zero

FALSE. is returned as the function value if an error has already occurred, or if this function
should fail for any reason.

The FITS standard says that string keyword values should be padded with trailing spaces
if they are shorter than 8 characters. For this reason, trailing spaces are removed from the
string returned by astGetFitsS if the original string (including any trailing spaces) contains
8 or fewer characters. Trailing spaces are not removed from longer strings.

astGetFrame Obtain a pointer to a specified Frame astGetFrame

in a FrameSet

Description: This function returns a pointer to a specified Frame in a FrameSet.

Synopsis: AstFrame xastGetFrame( AstFrameSet xthis, int iframe )
Parameters:
this
Pointer to the FrameSet.
iframe
The index of the required Frame within the FrameSet. This value should lie in the range
from 1 to the number of Frames in the FrameSet (as given by its Nframe attribute).
Returned Value:
astGetFrame()
A pointer to the requested Frame.
Notes:
e A value of AST__BASE or AST__CURRENT may be given for the "iframe" parameter to

specify the base Frame or the current Frame respectively.
This function increments the RefCount attribute of the selected Frame by one.

A null Object pointer (AST__NULL) will be returned if this function is invoked with the
AST error status set, or if it should fail for any reason.
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astGetGrfContext  Return the KeyMap that astGetGrfContext

describes a Plot’s graphics
context

Description: This function returns a reference to a KeyMap that will be passed to any drawing functions
registered using astGrfSet. This KeyMap can be used by an application to pass information to the
drawing functions about the context in which they are being called. The contents of the KeyMap
are never accessed byt the Plot class itself.

Synopsis:  AstKeyMap *astGetGrfContext( AstPlot xthis )
Parameters:
this
Pointer to the Plot.
Returned Value:

astGetGrfContext()
A pointer to the graphics context KeyMap. The returned pointer should be annulled when
it is no longer needed.

astGetMapping Obtain a Mapping that converts astGetMapping
between two Frames in a
FrameSet

Description: This function returns a pointer to a Mapping that will convert coordinates between the
coordinate systems represented by two Frames in a FrameSet.

Synopsis: AstMapping *astGetMapping( AstFrameSet sthis, int iframel, int iframe2 )

Parameters:
this
Pointer to the FrameSet.
iframel

The index of the first Frame in the FrameSet. This Frame describes the coordinate system
for the "input" end of the Mapping.

iframe2
The index of the second Frame in the FrameSet. This Frame describes the coordinate system
for the "output" end of the Mapping.

Returned Value:

astGetMapping()
Pointer to a Mapping whose forward transformation converts coordinates from the first co-
ordinate system to the second one, and whose inverse transformation converts coordinates in
the opposite direction.

Notes:

e The returned Mapping will include the clipping effect of any Regions which occur on the path
between the two supplied Frames (this includes the two supplied Frames themselves).

e The values given for the "iframel" and "iframe2" parameters should lie in the range from
1 to the number of Frames in the FrameSet (as given by its Nframe attribute). A value of
AST__BASE or AST__CURRENT may also be given to identify the FrameSet’s base Frame
or current Frame respectively. It is permissible for both these parameters to have the same
value, in which case a unit Mapping (UnitMap) is returned.
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e It should always be possible to generate the Mapping requested, but this does necessarily
guarantee that it will be able to perform the required coordinate conversion. If necessary,
the TranForward and TranInverse attributes of the returned Mapping should be inspected to
determine if the required transformation is available.

e A null Object pointer (AST__NULL) will be returned if this function is invoked with the
AST error status set, or if it should fail for any reason.

astGetRefPos Return the reference position in a astGetRefPos
specified celestial coordinate system

Description: This function returns the reference position (specified by attributes RefRA and RefDec)
converted to the celestial coordinate system represented by a supplied SkyFrame. The celestial
longitude and latitude values are returned in radians.

Synopsis: void astGetRefPos( AstSpecFrame xthis, AstSkyFrame xfrm, double xlon, double
xlat )

Parameters:

this
Pointer to the SpecFrame.

frm
Pointer to the SkyFrame which defines the required celestial coordinate system. If NULL
is supplied, then the longitude and latitude values are returned as FK5 J2000 RA and Dec
values.

lon
A pointer to a double in which to store the longitude of the reference point, in the coordinate
system represented by the supplied SkyFrame (radians).

lat
A pointer to a double in which to store the latitude of the reference point, in the coordinate
system represented by the supplied SkyFrame (radians).

Notes:

o Values of AST__BAD will be returned if this function is invoked with the AST error status
set, or if it should fail for any reason.

astGetRegionBounds Returns the astGetRegionBounds
bounding box of

Region

Description: This function returns the upper and lower limits of a box which just encompasses the
supplied Region. The limits are returned as axis values within the Frame represented by the
Region. The value of the Negated attribute is ignored (i.e. it is assumed that the Region has not
been negated).

Synopsis: void astGetRegionBounds( AstRegion xthis, double x1bnd, double xubnd )

Parameters:

this
Pointer to the Region.



249

Ibnd
Pointer to an array in which to return the lower axis bounds covered by the Region. It should
have at least as many elements as there are axes in the Region. If an axis has no lower limit,
the returned value will be the largest possible negative value.

ubnd
Pointer to an array in which to return the upper axis bounds covered by the Region. It should
have at least as many elements as there are axes in the Region. If an axis has no upper limit,
the returned value will be the largest possible positive value.

Notes:

e The value of the Negated attribute is ignored (i.e. it is assumed that the Region has not been
negated).

e If an axis has no extent on an axis then the lower limit will be returned larger than the upper
limit. Note, this is different to an axis which has a constant value (in which case both lower
and upper limit will be returned set to the constant value).

e If the bounds on an axis cannot be determined, AST__BAD is returned for both upper and
lower bounds

astGetRegionFrame Obtain a pointer to astGetRegionFrame
the encapsulated

Frame within a
Region

Description: This function returns a pointer to the Frame represented by a Region.
Synopsis: AstFrame xastGetRegionFrame( AstRegion *this )

Parameters:

this
Pointer to the Region.

Returned Value:

astGetRegionFrame()
A pointer to a deep copy of the Frame represented by the Region. Using this pointer to
modify the Frame will have no effect on the Region. To modify the Region, use the Region
pointer directly.

Notes:

e A null Object pointer (AST__NULL) will be returned if this function is invoked with the
AST error status set, or if it should fail for any reason.

astGetRegionFrameSet Obtain a astGetRegionFrameSet
pointer to the
encapsulated
FrameSet
within a
Region
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Description: This function returns a pointer to the FrameSet encapsulated by a Region. The base
Frame is the Frame in which the box was originally defined, and the current Frame is the Frame
into which the Region is currently mapped (i.e. it will be the same as the Frame returned by
astGetRegionFrame).

Synopsis: AstFrame xastGetRegionFrameSet( AstRegion *this )
Parameters:
this
Pointer to the Region.
Returned Value:

astGetRegionFrameSet()
A pointer to a deep copy of the FrameSet represented by the Region. Using this pointer to
modify the FrameSet will have no effect on the Region.

Notes:

e A null Object pointer (AST__NULL) will be returned if this function is invoked with the
AST error status set, or if it should fail for any reason.

astGetRegionMesh Return a mesh of points astGetRegionMesh
covering the surface or
volume of a Region

Description: This function returns the axis values at a mesh of points either covering the surface (i.e.
boundary) of the supplied Region, or filling the interior (i.e. volume) of the Region. The number
of points in the mesh is approximately equal to the MeshSize attribute.

Synopsis: void astGetRegionMesh( AstRegion xthis, int surface, int maxpoint, int maxcoord,
int *npoint, double *points )

Parameters:

this
Pointer to the Region.

surface
If non-zero, the returned points will cover the surface or the Region. Otherwise, they will fill
the interior of the Region.

maxpoint
If zero, the number of points in the mesh is returned in "snpoint", but no axis values are
returned and all other parameters are ignored. If not zero, the supplied value should be the
length of the second dimension of the "points" array. An error is reported if the number of
points in the mesh exceeds this number.

maxcoord
The length of the first dimension of the "points" array. An error is reported if the number of
axes in the supplied Region exceeds this number.
npoint
A pointer to an integer in which to return the number of points in the returned mesh.
points
The address of the first element in a 2-dimensional array of shape "[maxcoord][maxpoint]",
in which to return the coordinate values at the mesh positions. These are stored such
that the value of coordinate number "coord" for point number "point" is found in element
"points|[coord][point]".



251

Notes:

e An error is reported if the Region is unbounded.

e If the coordinate system represented by the Region has been changed since it was first created,
the returned axis values refer to the new (changed) coordinate system, rather than the original
coordinate system. Note however that if the transformation from original to new coordinate
system is non-linear, the shape within the new coordinate system may be distorted, and so
may not match that implied by the name of the Region subclass (Circle, Box, etc).

astGetRegionPoints Returns the positions astGetRegionPoints
that define the given
Region

Description: This function returns the axis values at the points that define the supplied Region. The
particular meaning of these points will depend on the type of class supplied, as listed below under
" Applicability:".

Synopsis: void astGetRegionPoints( AstRegion xthis, int maxpoint, int maxcoord, int *npoint,
double #*points )

Parameters:

this
Pointer to the Region.

maxpoint
If zero, the number of points needed to define the Region is returned in "snpoint", but no
axis values are returned and all other parameters are ignored. If not zero, the supplied value
should be the length of the second dimension of the "points" array. An error is reported if
the number of points needed to define the Region exceeds this number.

maxcoord
The length of the first dimension of the "points" array. An error is reported if the number of
axes in the supplied Region exceeds this number.

npoint
A pointer to an integer in which to return the number of points defining the Region.
points
The address of the first element in a 2-dimensional array of shape "[maxcoord][maxpoint]",
in which to return the coordinate values at the positions that define the Region. These are

stored such that the value of coordinate number "coord" for point number "point" is found
in element "points[coord][point]".

Class Applicability:
Region
All Regions have this attribute.

Box
The first returned position is the Box centre, and the second is a Box corner.

Circle
The first returned position is the Circle centre, and the second is a point on the circumference.

CmpRegion
Returns a value of zero for "snpoint" and leaves the supplied array contents unchanged. To
find the points defining a CmpRegion, use this method on the component Regions, which can
be accessed by invoking astDecompose on the CmpRegion.
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Ellipse
The first returned position is the Ellipse centre. The second is the end of one of the axes of
the ellipse. The third is some other point on the circumference of the ellipse, distinct from
the second point.

Interval
The first point corresponds to the lower bounds position, and the second point corresponds
to the upper bounds position. These are reversed to indicate an extcluded interval rather
than an included interval. See the Interval constructor for more information.

NullRegion
Returns a value of zero for "+npoint" and leaves the supplied array contents unchanged.

PointList
The positions returned are those that were supplied when the PointList was constructed.

Polygon
The positions returned are the vertex positions that were supplied when the Polygon was
constructed.

Prism
Returns a value of zero for "snpoint" and leaves the supplied array contents unchanged. To
find the points defining a Prism, use this method on the component Regions, which can be
accessed by invoking astDecompose on the CmpRegion.

Notes:

e If the coordinate system represented by the Region has been changed since it was first created,
the returned axis values refer to the new (changed) coordinate system, rather than the original
coordinate system. Note however that if the transformation from original to new coordinate
system is non-linear, the shape within the new coordinate system may be distorted, and so
may not match that implied by the name of the Region subclass (Circle, Box, etc).

astGetStcCoord Return information about an astGetStcCoord

AstroCoords element stored in
an Stc

Description: When any sub-class of Stc is created, the constructor function allows one or more Astro-

Coords elements to be stored within the Stc. This function allows any one of these AstroCoords
elements to be retrieved. The format of the returned information is the same as that used to
pass the original information to the Stc constructor. That is, the information is returned in a
KeyMap structure containing elements with one or more of the keys given by symbolic constants
AST__STCNAME, AST__STCVALUE, AST__STCERROR, AST__STCRES, AST__STCSIZE
and AST__STCPIXSZ.

If the coordinate system represented by the Stc has been changed since it was created (for instance,

by changing its System attribute), then the sizes and positions in the returned KeyMap will reflect
the change in coordinate system.

Synopsis:  AstKeyMap xastGetStcCoord( AstStc *this, int icoord )

Parameters:

this
Pointer to the Ste.
icoord

The index of the AstroCoords element required. The first has index one. The number of
AstroCoords elements in the Stc can be found using function astGetStcNcoord.
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Returned Value:

astGetStcCoord()
A pointer to a new KeyMap containing the required information.

Notes:

e A null Object pointer (AST__NULL) will be returned if this function is invoked with the
AST error status set, or if it should fail for any reason.

astGetStcNCoord Return the number of astGetStcNCoord
AstroCoords elements
stored in an Stc

Description: This function returns the number of AstroCoords elements stored in an Stc.
Synopsis: int astGetStcNCoord( AstStc xthis )

Parameters:
this
Pointer to the Stc.
Returned Value:

astGetStcNCoord()
The number of AstroCoords elements stored in the Stc.

Notes:

e Zero will be returned if this function is invoked with the AST error status set, or if it should
fail for any reason.

astGetStcRegion Obtain a copy of the astGetStcRegion
encapsulated Region within a
Stc

Description: This function returns a pointer to a deep copy of the Region supplied when the Stc was
created.

Synopsis: AstRegion *astGetStcRegion( AstStc xthis )

Parameters:
this
Pointer to the Stc.
Returned Value:

astGetStcRegion()
A pointer to a deep copy of the Region encapsulated within the supplied Stc.

Notes:

e A null Object pointer (AST__NULL) will be returned if this function is invoked with the
AST error status set, or if it should fail for any reason.
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astGetTableHeader Get the FITS headers astGetTableHeader
from a FitsTable

Description: This function returns a pointer to a FitsChan holding copies of the FITS headers associated
with a FitsTable.

Synopsis: AstFitsChan *astGetTableHeader( AstFitsTable xthis )

Parameters:
this
Pointer to the FitsTable.
Returned Value:
astGetTableHeader()
A pointer to a deep copy of the FitsChan stored within the FitsTable.

Notes:

e The returned pointer should be annulled using astAnnul when it is no longer needed.

e Changing the contents of the returned FitsChan will have no effect on the FitsTable. To
modify the FitsTable, the modified FitsChan must be stored in the FitsTable using astPut-
TableHeader.

astGetTables Retrieve any FitsTables currently in a astGetTables
FitsChan

Description: If the supplied FitsChan currently contains any tables, then this function returns a pointer
to a KeyMap. Each entry in the KeyMap is a pointer to a FitsTable holding the data for a FITS
binary table. The key used to access each entry is the FITS extension name in which the table
should be stored.

Tables can be present in a FitsChan as a result either of using the astPutTable (or astPutTables)
method to store existing tables in the FitsChan, or of using the astWrite method to write a
FrameSet to the FitsChan. For the later case, if the FitsChan "TabOK" attribute is positive and
the FrameSet requires a look-up table to describe one or more axes, then the "-TAB" algorithm
code described in FITS-WCS paper III is used and the table values are stored in the FitsChan in
the form of a FitsTable object (see the documentation for the "TabOK" attribute).

Synopsis:  AstKeyMap *astGetTables( AstFitsChan xthis )
Parameters:
this
Pointer to the FitsChan.
Returned Value:

astGetTables()
A pointer to a deep copy of the KeyMap holding the tables currently in the FitsChan, or
NULL if the FitsChan does not contain any tables. The returned pointer should be annulled
using astAnnul when no longer needed.

Notes:

e A null Object pointer (AST__NULL) will be returned if this function is invoked with the
AST error status set, or if it should fail for any reason.
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astGetUnc Obtain uncertainty information from a astGetUnc
Region

Description: This function returns a Region which represents the uncertainty associated with positions
within the supplied Region. See astSetUnc for more information about Region uncertainties and
their use.

Synopsis: AstRegion *astGetUnc( AstRegion *this, int def )

Parameters:

this
Pointer to the Region.

def
Controls what is returned if no uncertainty information has been associated explicitly with
the supplied Region. If a non-zero value is supplied, then the default uncertainty Region used
internally within AST is returned (see "Applicability" below). If zero is supplied, then NULL
will be returned (without error).

Class Applicability:

CmpRegion
The default uncertainty for a CmpRegion is taken from one of the two component Regions.
If the first component Region has a non-default uncertainty, then it is used as the default
uncertainty for the parent CmpRegion. Otherwise, if the second component Region has a
non-default uncertainty, then it is used as the default uncertainty for the parent CmpRegion.
If neither of the component Regions has non-default uncertainty, then the default uncertainty
for the CmpRegion is 1.0E-6 of the bounding box of the CmpRegion.

Prism
The default uncertainty for a Prism is formed by combining the uncertainties from the two
component Regions. If a component Region does not have a non-default uncertainty, then its
default uncertainty will be used to form the default uncertainty of the parent Prism.

Region
For other classes of Region, the default uncertainty is 1.0E-6 of the bounding box of the
Region. If the bounding box has zero width on any axis, then the uncertainty will be 1.0E-6
of the axis value.

Returned Value:

astGetUnc()
A pointer to a Region describing the uncertainty in the supplied Region.

Notes:

e If uncertainty information is associated with a Region, and the coordinate system described
by the Region is subsequently changed (e.g. by changing the value of its System attribute, or
using the astMapRegion function), then the uncertainty information returned by this function
will be modified so that it refers to the coordinate system currently described by the supplied
Region.

e A null Object pointer (NULL) will be returned if this function is invoked with the AST error
status set, or if it should fail for any reason.
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astGrfPop  Restore previously saved graphics functions astGrfPop
used by a Plot

Description: This function restores a snapshot of the graphics functions stored previously by calling
astGrfPush. The restored graphics functions become the current graphics functions used by the
Plot.

The astGrfPush and astGrfPop functions are intended for situations where it is necessary to make
temporary changes to the graphics functions used by the Plot. The current functions should first
be saved by calling astGrfPush. New functions should then be registered using astGrfSet. The
required graphics should then be produced. Finally, astGrfPop should be called to restore the
original graphics functions.

Synopsis:  void astGrfPop( AstPlot *this )

Parameters:

this
Pointer to the Plot.

Notes:

e This function returns without action if there are no snapshots to restore. No error is reported
in this case.

astGrfPush  Save the current graphics functions used  astGrfPush
by a Plot

Description: This function takes a snapshot of the graphics functions which are currently registered
with the supplied Plot, and saves the snapshot on a first-in-last-out stack within the Plot. The
snapshot can be restored later using function astGrfPop.

The astGrfPush and astGrfPop functions are intended for situations where it is necessary to make
temporary changes to the graphics functions used by the Plot. The current functions should first
be saved by calling astGrfPush. New functions should then be registered using astGrfSet. The
required graphics should then be produced. Finally, astGrfPop should be called to restore the
original graphics functions.

Synopsis:  void astGrfPush( AstPlot xthis )

Parameters:

this
Pointer to the Plot.

astGrfSet  Register a graphics function for use by a Plot astGrfSet

Description: This function can be used to select the underlying graphics functions to be used when the
supplied Plot produces graphical output. If this function is not called prior to producing graphical
output, then the underlying graphics functions selected at link-time (using the ast_link command)
will be used. To use alternative graphics functions, call this function before the graphical output
is created, specifying the graphics functions to be used. This will register the function for future
use, but the function will not actually be used until the Grf attribute is given a non-zero value.

Synopsis: void astGrfSet( AstPlot xthis, const char *name, AstGrfFun fun )
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Parameters:

this
Pointer to the Plot.

name
A name indicating the graphics function to be replaced. Various graphics functions are used
by the Plot class, and any combination of them may be supplied by calling this function once
for each function to be replaced. If any of the graphics functions are not replaced in this way,
the corresponding functions in the graphics interface selected at link-time (using the ast_link
command) are used. The allowed names are:

e Attr - Enquire or set a graphics attribute value

e BBuf - Start a new graphics buffering context

e Cap - Inquire a capability

e EBuf - End the current graphics buffering context

e Flush - Flush all pending graphics to the output device
e Line - Draw a polyline (i.e. a set of connected lines)

e Mark - Draw a set of markers

e Qch - Return the character height in world coordinates
e Scales - Get the axis scales

e Text - Draw a character string

e TxExt - Get the extent of a character string

The string is case insensitive. For details of the interface required for each, see the sections
below.

fun
A Pointer to the function to be used to provide the functionality indicated by parameter
name. The interface for each function is described below, but the function pointer should be
cast to a type of AstGrfFun when calling astGrfSet.

Once a function has been provided, a null pointer can be supplied in a subsequent call to
astGrfSet to reset the function to the corresponding function in the graphics interface selected
at link-time.

Function Interfaces:

Attr:

All the functions listed below (except for "Cap") should return an integer value of 0 if an error
occurs, and 1 otherwise. All x and y values refer to "graphics cordinates" as defined by the
graphbox parameter of the astPlot call which created the Plot.

The first parameter ("grfcon") for each function is an AST KeyMap pointer that can be used by
the called function to establish the context in which it is being called. The contents of the KeyMap
are determined by the calling application, which should obtain a pointer to the KeyMap using the
astGetGrfContext function, and then store any necessary information in the KeyMap using the
methods of the KeyMap class. Note, the functions listed below should never annul or delete the
supplied KeyMap pointer.

The "Attr" function returns the current value of a specified graphics attribute, and optionally
establishes a new value. The supplied value is converted to an integer value if necessary before use.
It requires the following interface:

int Attr( AstObject *grfcon, int attr, double value, double xold_value, int prim )

e grfcon - A KeyMap containing information passed from the calling application.
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e attr - An integer value identifying the required attribute. The following symbolic values
are defined in grf.h: GRF__STYLE (Line style), GRF__WIDTH (Line width), GRF__SIZE
(Character and marker size scale factor), GRF__FONT (Character font), GRF__COLOUR
(Colour index).

e value - A new value to store for the attribute. If this is AST__BAD no value is stored.

e old_value - A pointer to a double in which to return the attribute value. If this is NULL, no
value is returned.

e prim - The sort of graphics primitive to be drawn with the new attribute. Identified by the
following values defined in grf.h: GRF__LINE, GRF__MARK, GRF__TEXT.

BBuf:

The "BBuf" function should start a new graphics buffering context. A matching call to the function
"EBuf" should be used to end the context. The nature of the buffering is determined by the
underlying graphics system.

int BBuf( AstObject *grfcon )

e grfcon - A KeyMap containing information passed from the calling application.

The "Cap" function is called to determine if the grf module has a given capability, as indicated by
the "cap" argument:

int Cap( AstObject sgrfcon, int cap, int value )

e grfcon - A KeyMap containing information passed from the calling application.

e cap - The capability being inquired about. This will be one of the following constants defined
in grf.h:

GRF__SCALES: This function should return a non-zero value if the "Scales" function is imple-
mented, and zero otherwise. The supplied "value" argument should be ignored.

GRF__MJUST: This function should return a non-zero value if the "Text" and "TxExt" functions
recognise "M" as a character in the justification string. If the first character of a justification
string is "M", then the text should be justified with the given reference point at the bottom of
the bounding box. This is different to "B" justification, which requests that the reference point
be put on the baseline of the text, since some characters hang down below the baseline. If the
"Text" or "TxExt" function cannot differentiate between "M" and "B", then this function should
return zero, in which case "M" justification will never be requested by Plot. The supplied "value"
argument should be ignored.

GRF__ESC: This function should return a non-zero value if the "Text" and "TxExt" functions can
recognise and interpret graphics escape sequences within the supplied string (see attribute Escape).
Zero should be returned if escape sequences cannot be interpreted (in which case the Plot class will
interpret them itself if needed). The supplied "value" argument should be ignored only if escape
sequences cannot be interpreted by "Text" and "TxExt". Otherwise, "value" indicates whether
"Text" and "TxExt" should interpret escape sequences in subsequent calls. If "value" is non-zero
then escape sequences should be interpreted by "Text" and "TxExt". Otherwise, they should be
drawn as literal text.

e value - The use of this parameter depends on the value of "cap" as described above.

e Returned Function Value: The value returned by the function depends on the value of "cap"
as described above. Zero should be returned if the supplied capability is not recognised.
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EBuf:

The "EBuf" function should end the current graphics buffering context. See the description of
"BBuf" above for further details. It requires the following interface:

int EBuf( AstObject xgrfcon )

e grfcon - A KeyMap containing information passed from the calling application.

Flush:

The "Flush" function ensures that the display device is up-to-date, by flushing any pending graphics
to the output device. It requires the following interface:

int Flush( AstObject xgrfcon )

e grfcon - A KeyMap containing information passed from the calling application.

Line:
The "Line" function displays lines joining the given positions and requires the following interface:

int Line( AstObject *grfcon, int n, const float *x, const float *y )

e grfcon - A KeyMap containing information passed from the calling application.
e n - The number of positions to be joined together.
e x - A pointer to an array holding the "n" x values.

e v - A pointer to an array holding the "n" y values.

Mark:
The "Mark" function displays markers at the given positions. It requires the following interface:

int Mark( AstObject xgrfcon, int n, const float *x, const float xy, int type )

grfcon - A KeyMap containing information passed from the calling application.
e n - The number of positions to be marked.
e x - A pointer to an array holding the "n" x values.

e v - A pointer to an array holding the "n" y values.

type - An integer which can be used to indicate the type of marker symbol required.

Qch:

The "Qch" function returns the heights of characters drawn vertically and horizontally in graphics
coordinates. It requires the following interface:

int Qch( AstObject xgrfcon, float xchv, float *chh )

e grfcon - A KeyMap containing information passed from the calling application.

e chv - A pointer to the float which is to receive the height of characters drawn with a vertical
baseline. This will be an increment in the X axis.

e chh - A pointer to the float which is to receive the height of characters drawn with a horizontal
baseline. This will be an increment in the Y axis.
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Scales:

Text:

The "Scales" function returns two values (one for each axis) which scale increments on the corre-
sponding axis into a "normal" coordinate system in which: 1) the axes have equal scale in terms
of (for instance) millimetres per unit distance, 2) X values increase from left to right, and 3) Y
values increase from bottom to top. It requires the following interface:

int Scales( AstObject xgrfcon, float xalpha, float *beta )

e grfcon - A KeyMap containing information passed from the calling application.

e alpha - A pointer to the float which is to receive the scale for the X axis (i.e. Xnorm =
alphaxXworld).

e beta - A pointer to the float which is to receive the scale for the Y axis (i.e. Ynorm =
betaxYworld).

The "Text" function displays a character string at a given position using a specified justification
and up-vector. It requires the following interface:

int Text( AstObject *grfcon, const char stext, float x, float y, const char xjust, float upx, float upy

)

e grfcon - A KeyMap containing information passed from the calling application.
e text - Pointer to a null-terminated character string to be displayed.

e x - The reference x coordinate.

e y - The reference y coordinate.

e just - A character string which specifies the location within the text string which is to be
placed at the reference position given by x and y. The first character may be *T” for "top", 'C’
for "centre", or 'B’ for "bottom", and specifies the vertical location of the reference position.
Note, "bottom" corresponds to the base-line of normal text. Some characters (eg "y", "g",
"p", etc) descend below the base-line. The second character may be 'L’ for "left", 'C’ for
"centre", or 'R’ for "right", and specifies the horizontal location of the reference position. If
the string has less than 2 characters then 'C’ is used for the missing characters.

e upx - The x component of the up-vector for the text. If necessary the supplied value should
be negated to ensure that positive values always refer to displacements from left to right on
the screen.

e upy - The y component of the up-vector for the text. If necessary the supplied value should
be negated to ensure that positive values always refer to displacements from bottom to top
on the screen.

TxExt:

The "TxExt" function returns the corners of a box which would enclose the supplied character
string if it were displayed using the Text function described above. The returned box includes any
leading or trailing spaces. It requires the following interface:

int TxExt( AstObject xgrfcon, const char xtext, float x, float y, const char *just, float upx, float
upy, float xxb, float *xyb )

grfcon - A KeyMap containing information passed from the calling application.

text - Pointer to a null-terminated character string to be displayed.

e x - The reference x coordinate.

y - The reference y coordinate.
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e just - A character string which specifies the location within the text string which is to be
placed at the reference position given by x and y. See "Text" above.

e upx - The x component of the up-vector for the text. See "Text" above.
e upy - The y component of the up-vector for the text. See "Text" above.

e xb - An array of 4 elements in which to return the x coordinate of each corner of the bounding
box.

e vb - An array of 4 elements in which to return the y coordinate of each corner of the bounding
box.

astGrid Draw a set of labelled coordinate axes astGrid

Description: This function draws a complete annotated set of coordinate axes for a Plot with (option-
ally) a coordinate grid superimposed. Details of the axes and grid can be controlled by setting
values for the various attributes defined by the Plot class (q.v.).

Synopsis:  void astGrid( AstPlot xthis )

Parameters:

this
Pointer to the Plot.

Notes:

e If the supplied Plot is a Plot3D, the axes will be annotated using three 2-dimensional Plots,
one for each 2D plane in the 3D current coordinate system. The plots will be "pasted" onto
3 faces of the cuboid graphics volume specified when the Plot3D was constructed. The faces
to be used can be controlled by the "RootCorner" attribute.

e An error results if either the current Frame or the base Frame of the Plot is not 2-dimensional
or (for a Plot3D) 3-dimensional.

e An error also results if the transformation between the base and current Frames of the Plot is
not defined in either direction (i.e. the Plot’s TranForward or TranInverse attribute is zero).

astGridLine Draw a grid line (or axis) for a Plot astGridLine

Description: This function draws a curve in the physical coordinate system of a Plot by varying only
one of the coordinates along the length of the curve. It is intended for drawing coordinate axes,
coordinate grids, and tick marks on axes (but note that these are also available via the more
comprehensive astGrid function).

The curve is transformed into graphical coordinate space for plotting, so that a straight line in
physical coordinates may result in a curved line being drawn if the Mapping involved is non-linear.
Any discontinuities in the Mapping between physical and graphical coordinates are catered for, as
is any clipping established using astClip.

Synopsis: void astGridLine( AstPlot #this, int axis, const double start[], double length
)

Parameters:

this
Pointer to the Plot.
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axis
The index of the Plot axis whose physical coordinate value is to be varied along the length
of the curve (all other coordinates will remain fixed). This value should lie in the range from
1 to the number of Plot axes (Naxes attribute).

start
An array, with one element for each axis of the Plot, giving the physical coordinates of the
start of the curve.

length
The length of curve to be drawn, given as an increment along the selected physical axis. This
may be positive or negative.

Notes:
e No curve is drawn if the "start" array contains any coordinates with the value AST__BAD,
nor if "length" has this value.
e An error results if the base Frame of the Plot is not 2-dimensional.
e An error also results if the transformation between the current and base Frames of the Plot
is not defined (i.e. the Plot’s TranInverse attribute is zero).
astGrismMap Create a GrismMap astGrismMap

Description: This function creates a new GrismMap and optionally initialises its attributes.

A GrismMap is a specialised form of Mapping which transforms 1-dimensional coordinates using
the spectral dispersion equation described in FITS-WCS paper III "Representation of spectral
coordinates in FITS". This describes the dispersion produced by gratings, prisms and grisms.

When initially created, the forward transformation of a GrismMap transforms input "grism param-
eter" values into output wavelength values. The "grism parameter" is a dimensionless value which
is linearly related to position on the detector. It is defined in FITS-WCS paper III as "the offset
on the detector from the point of intersection of the camera axis, measured in units of the effective
local length". The units in which wavelength values are expected or returned is determined by the
values supplied for the GrismWaveR, GrismNRP and GrismG attribute: whatever units are used
for these attributes will also be used for the wavelength values.

Synopsis: AstGrismMap *astGrismMap( const char xoptions, ... )
Parameters:

options
Pointer to a null-terminated string containing an optional comma-separated list of attribute
assignments to be used for initialising the new GrismMap. The syntax used is identical to
that for the astSet function and may include "printf" format specifiers identified by "%"
symbols in the normal way.

If the "options" string contains "%" format specifiers, then an optional list of additional
arguments may follow it in order to supply values to be substituted for these specifiers. The
rules for supplying these are identical to those for the astSet function (and for the C "printf"
function).

Returned Value:

astGrismMap()
A pointer to the new GrismMap.
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Notes:

e A null Object pointer (AST__NULL) will be returned if this function is invoked with the
AST error status set, or if it should fail for any reason.

astHasAttribute Test if an Object has a named astHasAttribute
attribute

Description: This function returns a boolean result (0 or 1) to indicate whether the supplied Object
has an attribute with the supplied name.

Synopsis: int astHasAttribute( AstObject xthis, const char *attrib )

Parameters:
this
Pointer to the first Object.
attrib
Pointer to a string holding the name of the attribute to be tested.
Class Applicability:
Object
This function applies to all Objects.
Returned Value:

astHasAttribute()
One if the Object has the named attribute, otherwise zero.

Notes:
e A value of zero will be returned if this function is invoked with the AST error status set, or
if it should fail for any reason.
astHasColumn Returns a flag indicating if a astHasColumn

column is present in a Table

Description: This function returns a flag indicating if a named column exists in a Table, for instance,
by having been added to to the Table using astAddColumn.

Synopsis: int astHasColumn( AstTable *this, const char xcolumn )

Parameters:

this
Pointer to the Table.

column
The character string holding the upper case name of the column. Trailing spaces are ignored.

Notes:

o A value of zero is returned for if an error occurs.
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astHasParameter  Returns a flag indicating if astHasParameter
a named global parameter is
present in a Table

Description: This function returns a flag indicating if a named parameter exists in a Table, for instance,
by having been added to to the Table using astAddParameter.
Synopsis: int astHasParameter( AstTable xthis, const char xparameter )

Parameters:

this
Pointer to the Table.

parameter
The character string holding the upper case name of the parameter. Trailing spaces are
ignored.

Notes:

e A value of zero is returned for if an error occurs.

astImport Import an Object pointer to the current astImport
context

Description: This function imports an Object pointer that was created in a higher or lower level context,
into the current AST context. This means that the pointer will be annulled when the current
context is ended (with astEnd).

Synopsis:  void astImport( AstObject xthis )

Parameters:
this
Object pointer to be imported.
Class Applicability:

Object
This function applies to all Objects.

astIntersect Find the point of intersection between astIntersect
two geodesic curves

Description: This function finds the coordinate values at the point of intersection between two geodesic
curves. Each curve is specified by two points on the curve. It can only be used with 2-dimensional
Frames.

For example, in a basic Frame, it will find the point of intersection between two straight lines. But
for a SkyFrame it will find an intersection of two great circles.

Synopsis: void astIntersect( AstFrame xthis, const double al[2], const double a2[2], const
double b1[2], const double b2[2], double cross[2] )

Parameters:

this
Pointer to the Frame.
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An array of double, with one element for each Frame axis (Naxes attribute). This should
contain the coordinates of the first point on the first geodesic curve.

An array of double, with one element for each Frame axis (Naxes attribute). This should
contain the coordinates of a second point on the first geodesic curve. It should not be co-
incident with the first point.

An array of double, with one element for each Frame axis (Naxes attribute). This should
contain the coordinates of the first point on the second geodesic curve.

An array of double, with one element for each Frame axis (Naxes attribute). This should
contain the coordinates of a second point on the second geodesic curve. It should not be
co-incident with the first point.

Cross

An array of double, with one element for each Frame axis in which the coordinates of the
required intersection will be returned.

Notes:

e For SkyFrames each curve will be a great circle, and in general each pair of curves will intersect
at two diametrically opposite points on the sky. The returned position is the one which is
closest to point "al".

e This function will return "bad" coordinate values (AST__BAD) if any of the input coordinates
has this value, or if the two points defining either geodesic are co-incident, or if the two curves
do not intersect.

e The geodesic curve used by this function is the path of shortest distance between two points,
as defined by the astDistance function.

e An error will be reported if the Frame is not 2-dimensional.

astInterval Create a Interval astInterval

Description: This function creates a new Interval and optionally initialises its attributes.

A Interval is a Region which represents upper and/or lower limits on one or more axes of a Frame.
For a point to be within the region represented by the Interval, the point must satisfy all the
restrictions placed on all the axes. The point is outside the region if it fails to satisfy any one of
the restrictions. Each axis may have either an upper limit, a lower limit, both or neither. If both
limits are supplied but are in reverse order (so that the lower limit is greater than the upper limit),
then the interval is an excluded interval, rather than an included interval.

At least one axis limit must be supplied.

Note, The Interval class makes no allowances for cyclic nature of some coordinate systems (such
as SkyFrame coordinates). A Box should usually be used in these cases since this requires the user
to think about suitable upper and lower limits,

Synopsis: AstInterval xastInterval( AstFrame xframe, const double lbnd[], const double
ubnd[], AstRegion *unc, const char xoptioms, ... )

Parameters:
frame

A pointer to the Frame in which the region is defined. A deep copy is taken of the supplied
Frame. This means that any subsequent changes made to the Frame using the supplied
pointer will have no effect the Region.
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Ibnd
An array of double, with one element for each Frame axis (Naxes attribute) containing the
lower limits on each axis. Set a value to AST__BAD to indicate that the axis has no lower
limit.

ubnd
An array of double, with one element for each Frame axis (Naxes attribute) containing the
upper limits on each axis. Set a value to AST__BAD to indicate that the axis has no upper
limit.

unc
An optional pointer to an existing Region which specifies the uncertainties associated with
the boundary of the Box being created. The uncertainty in any point on the boundary of
the Box is found by shifting the supplied "uncertainty" Region so that it is centred at the
boundary point being considered. The area covered by the shifted uncertainty Region then
represents the uncertainty in the boundary position. The uncertainty is assumed to be the
same for all points.

If supplied, the uncertainty Region must be of a class for which all instances are centro-
symetric (e.g. Box, Circle, Ellipse, etc.) or be a Prism containing centro-symetric component
Regions. A deep copy of the supplied Region will be taken, so subsequent changes to the
uncertainty Region using the supplied pointer will have no effect on the created Box. Alter-
natively, a NULL Object pointer may be supplied, in which case a default uncertainty is used
equivalent to a box 1.0E-6 of the size of the Box being created.

The uncertainty Region has two uses: 1) when the astOverlap function compares two Regions
for equality the uncertainty Region is used to determine the tolerance on the comparison, and
2) when a Region is mapped into a different coordinate system and subsequently simplified
(using astSimplify), the uncertainties are used to determine if the transformed boundary can
be accurately represented by a specific shape of Region.

options
Pointer to a null-terminated string containing an optional comma-separated list of attribute
assignments to be used for initialising the new Interval. The syntax used is identical to that
for the astSet function and may include "printf" format specifiers identified by "%" symbols
in the normal way.

If the "options" string contains "%" format specifiers, then an optional list of additional
arguments may follow it in order to supply values to be substituted for these specifiers. The
rules for supplying these are identical to those for the astSet function (and for the C "printf"
function).

Returned Value:

astInterval()
A pointer to the new Interval.

Notes:

e A null Object pointer (AST__NULL) will be returned if this function is invoked with the
AST error status set, or if it should fail for any reason.

Status Handling:

The protected interface to this function includes an extra parameter at the end of the parameter
list descirbed above. This parameter is a pointer to the integer inherited status variable: "int
*status".
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astIntraMap Create an IntraMap astIntraMap

Description: This function creates a new IntraMap and optionally initialises its attributes.

An IntraMap is a specialised form of Mapping which encapsulates a privately-defined coordinate
transformation function (e.g. written in C) so that it may be used like any other AST Mapping.
This allows you to create Mappings that perform any conceivable coordinate transformation.

However, an IntraMap is intended for use within a single program or a private suite of software,
where all programs have access to the same coordinate transformation functions (i.e. can be linked
against them). IntraMaps should not normally be stored in datasets which may be exported
for processing by other software, since that software will not have the necessary transformation
functions available, resulting in an error.

You must register any coordinate transformation functions to be used using astIntraReg before
creating an IntraMap.

Synopsis: AstIntraMap *astIntraMap( const char *name, int nin, int nout, const char *options,

)

Parameters:

name
Pointer to a null-terminated string containing the name of the transformation function to
use (which should previously have been registered using astIntraReg). This name is case
sensitive. All white space will be removed before use.

nin
The number of input coordinates. This must be compatible with the number of input coordi-
nates accepted by the transformation function (as specified when this function was registered
using astIntraReg).

nout
The number of output coordinates. This must be compatible with the number of output
coordinates produced by the transformation function (as specified when this function was
registered using astIntraReg).

options
Pointer to a null-terminated string containing an optional comma-separated list of attribute
assignments to be used for initialising the new IntraMap. The syntax used is identical to that
for the astSet function and may include "printf" format specifiers identified by "%" symbols
in the normal way.

If the "options" string contains "%" format specifiers, then an optional list of additional
arguments may follow it in order to supply values to be substituted for these specifiers. The
rules for supplying these are identical to those for the astSet function (and for the C "printf"
function).

Returned Value:

astIntraMap()
A pointer to the new IntraMap.

Notes:

e A null Object pointer (AST__NULL) will be returned if this function is invoked with the
AST error status set, or if it should fail for any reason.
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astIntraReg Register a transformation function for astIntraReg
use by an IntraMap

Description: This function registers a privately-defined coordinate transformation function written in
C so that it may be used to create an IntraMap. An IntraMap is a specialised form of Mapping
which encapsulates the C function so that it may be used like any other AST Mapping. This allows
you to create Mappings that perform any conceivable coordinate transformation.

Registration of relevant transformation functions is required before using the astIntraMap con-
structor function to create an IntraMap or reading an external representation of an IntraMap from
a Channel.

Synopsis: astIntraReg( const char xname, int nin, int nout, void (x tran)( AstMapping x,
int, int, const double *[], int, int, double *[] ), unsigned int flags, const char
xpurpose, const char xauthor, const char *contact )

Parameters:

name
Pointer to a null-terminated string containing a unique name to be associated with the trans-
formation function in order to identify it. This name is case sensitive. All white space will
be removed before use.

nin
The number of input coordinates accepted by the transformation function (i.e. the number
of dimensions of the space in which the input points reside). A value of AST__ANY may be
given if the function is able to accommodate a variable number of input coordinates.

nout
The number of output coordinates produced by the transformation function (i.e. the number
of dimensions of the space in which the output points reside). A value of AST__ANY may
be given if the function is able to produce a variable number of output coordinates.

tran
Pointer to the transformation function to be registered. This function should perform what-
ever coordinate transformations are required and should have an interface like astTranP
(q.v.).

flags
This value may be used to supply a set of flags which describe the transformation function
and which may affect the behaviour of any IntraMap which uses it. Often, a value of zero
will be given here, but you may also supply the bitwise OR of a set of flags as described in
the "Transformation Flags" section (below).

purpose
Pointer to a null-terminated string containing a short (one line) textual comment to describe
the purpose of the transformation function.

author
Pointer to a null-terminated string containing the name of the author of the transformation
function.

contact
Pointer to a null-terminated string containing contact details for the author of the trans-
formation function (e.g. an e-mail or WWW address). If any IntraMap which uses this
transformation function is exported as part of a dataset to an external user who does not
have access to the function, then these contact details should allow them to obtain the nec-
essary code.

Notes:
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e Beware that an external representation of an IntraMap (created by writing it to a Channel)
will not include the coordinate transformation function which it uses, so will only refer to the
function by its name (as assigned using astIntraReg). Consequently, the external representa-
tion cannot be utilised by another program unless that program has also registered the same
transformation function with the same name using an identical invocation of astIntraReg. If
no such registration has been performed, then attempting to read the external representation
will result in an error.

e You may use astIntraReg to register a transformation function with the same name more
than once, but only if the arguments supplied are identical on each occasion (i.e there is no
way of changing things once a function has been successfully registered under a given name,
and attempting to do so will result in an error). This feature simply allows registration to
be performed independently, but consistently, at several places within your program, without
having to check whether it has already been done.

e If an error occurs in the transformation function, this may be indicated by setting the AST
error status to an error value (using astSetStatus) before it returns. This will immediately
terminate the current AST operation. The error value AST__ITFER is available for this
purpose, but other values may also be used (e.g. if you wish to distinguish different types of
error).

Transformation Flags:

The following flags are defined in the “ast.h” header file and allow you to provide further information
about the nature of the transformation function. Having selected the set of flags which apply, you
should supply the bitwise OR of their values as the “flags” argument to astIntraReg.

e AST__NOFWD: If this flag is set, it indicates that the transformation function does not
implement a forward coordinate transformation. In this case, any IntraMap which uses it will
have a TranForward attribute value of zero and the transformation function itself will not be
invoked with its “forward” argument set to a non-zero value. By default, it is assumed that
a forward transformation is provided.

e AST__NOINV: If this flag is set, it indicates that the transformation function does not
implement an inverse coordinate transformation. In this case, any IntraMap which uses it
will have a TranInverse attribute value of zero and the transformation function itself will not
be invoked with its “forward” argument set to zero. By default, it is assumed that an inverse
transformation is provided.

e AST__SIMPFI: You may set this flag if applying the transformation function’s forward coor-
dinate transformation, followed immediately by the matching inverse transformation, should
always restore the original set of coordinates. It indicates that AST may replace such a se-
quence of operations by an identity Mapping (a UnitMap) if it is encountered while simplifying
a compound Mapping (e.g. using astSimplify). It is not necessary that both transformations
have actually been implemented.

e AST__SIMPIF: You may set this flag if applying the transformation function’s inverse coor-
dinate transformation, followed immediately by the matching forward transformation, should
always restore the original set of coordinates. It indicates that AST may replace such a se-
quence of operations by an identity Mapping (a UnitMap) if it is encountered while simplifying
a compound Mapping (e.g. using astSimplify). It is not necessary that both transformations
have actually been implemented.

astInvert Invert a Mapping astInvert

Description: This function inverts a Mapping by reversing the boolean sense of its Invert attribute. If
this attribute is zero (the default), the Mapping will transform coordinates in the way specified
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when it was created. If it is non-zero, the input and output coordinates will be inter-changed so
that the direction of the Mapping is reversed. This will cause it to display the inverse of its original
behaviour.

Synopsis: void astInvert( AstMapping *this )

Parameters:

this
Pointer to the Mapping.

astIsA<Class>  Test membership of a class by an  astIsA<Class>
Object

Description: This is a family of functions which test whether an Object is a member of the class called
<Class>, or of any class derived from it.

Synopsis: int astIsA<Class>( const Ast<Class> xthis )

Parameters:

this
Pointer to the Object.

Class Applicability:

Object
These functions apply to all Objects.

Returned Value:

astIsA<Class>()
One if the Object belongs to the class called <Class> (or to a class derived from it), otherwise
zZero.

Examples:

member = astIsAFrame( obj );
Tests whether Object "obj" is a member of the Frame class, or of any class derived from a
Frame.

Notes:

e Every AST class provides a function (astIsA<Class>) of this form, where <Class> should
be replaced by the class name.

e This function attempts to execute even if the AST error status is set on entry, although no
further error report will be made if it subsequently fails under these circumstances.

e A value of zero will be returned if this function should fail for any reason. In particular, it
will fail if the pointer supplied does not identify an Object of any sort.
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astKeyMap Create a KeyMap astKeyMap

Description: This function creates a new empty KeyMap and optionally initialises its attributes. Entries
can then be added to the KeyMap using the astMapPut0O<X> and astMapPut1<X> functions.

The KeyMap class is used to store a set of values with associated keys which identify the values. The
keys are strings. These may be case sensitive or insensitive as selected by the KeyCase attribute,
and trailing spaces are ignored. The value associated with a key can be integer (signed 4 and 2
byte, or unsigned 1 byte), floating point (single or double precision), void pointer, character string
or AST Object pointer. Each value can be a scalar or a one-dimensional vector. A KeyMap is
conceptually similar to a Mapping in that a KeyMap transforms an input into an output - the input
is the key, and the output is the value associated with the key. However, this is only a conceptual
similarity, and it should be noted that the KeyMap class inherits from the Object class rather than
the Mapping class. The methods of the Mapping class cannot be used with a KeyMap.

Synopsis:  AstKeyMap *astKeyMap( const char xoptions, ... )
Parameters:

options
Pointer to a null-terminated string containing an optional comma-separated list of attribute
assignments to be used for initialising the new KeyMap. The syntax used is identical to that
for the astSet function and may include "printf" format specifiers identified by "%" symbols
in the normal way.

If the "options" string contains "%" format specifiers, then an optional list of additional
arguments may follow it in order to supply values to be substituted for these specifiers. The
rules for supplying these are identical to those for the astSet function (and for the C "printf"
function).

Returned Value:

astKeyMap()
A pointer to the new KeyMap.

Notes:

e A null Object pointer (AST__NULL) will be returned if this function is invoked with the
AST error status set, or if it should fail for any reason.

Status Handling:

The protected interface to this function includes an extra parameter at the end of the parameter
list descirbed above. This parameter is a pointer to the integer inherited status variable: "int
*status".

astLinear Approx Obtain a linear astLinear Approx
approximation to a Mapping,

if appropriate

Description: This function tests the forward coordinate transformation implemented by a Mapping
over a given range of input coordinates. If the transformation is found to be linear to a specified
level of accuracy, then an array of fit coefficients is returned. These may be used to implement a
linear approximation to the Mapping’s forward transformation within the specified range of output
coordinates. If the transformation is not sufficiently linear, no coefficients are returned.
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Synopsis: int astLinearApprox( AstMapping *this, const double *lbnd, const double xubnd,
double tol, double *xfit )

Parameters:

this

Pointer to the Mapping.

Ibnd

Pointer to an array of doubles containing the lower bounds of a box defined within the input
coordinate system of the Mapping. The number of elements in this array should equal the
value of the Mapping’s Nin attribute. This box should specify the region over which linearity
is required.

ubnd

tol

fit

Pointer to an array of doubles containing the upper bounds of the box specifying the region
over which linearity is required.

The maximum permitted deviation from linearity, expressed as a positive Cartesian displace-
ment in the output coordinate space of the Mapping. If a linear fit to the forward transfor-
mation of the Mapping deviates from the true transformation by more than this amount at
any point which is tested, then no fit coefficients will be returned.

Pointer to an array of doubles in which to return the co-efficients of the linear approximation
to the specified transformation. This array should have at least "( Nin + 1 ) * Nout",
elements. The first Nout elements hold the constant offsets for the transformation outputs.
The remaining elements hold the gradients. So if the Mapping has 2 inputs and 3 outputs
the linear approximation to the forward transformation is:

X_out = fit[0] + fit[3]*«X_in + fit[4]*Y _in

Y _out = fit[1] + fit[5]*X_in + fit[6]xY_in

Z_out = fit[2] + fit[7]*X_in + fit[8]*Y _in

Returned Value:
astLinear Approx()

Notes:

If the forward transformation is sufficiently linear, a non-zero value is returned. Otherwise
zero is returned and the fit co-efficients are set to AST__BAD.

This function fits the Mapping’s forward transformation. To fit the inverse transformation,
the Mapping should be inverted using astInvert before invoking this function.

A value of zero will be returned if this function is invoked with the global error status set, or
if it should fail for any reason.

astLock Lock an Object for exclusive use by the calling astLock

thread

Description: The thread-safe public interface to AST is designed so that an error is reported if any
thread attempts to use an Object that it has not previously locked for its own exclusive use using
this function. When an Object is created, it is initially locked by the thread that creates it, so
newly created objects do not need to be explicitly locked. However, if an Object pointer is passed
to another thread, the original thread must first unlock it (using astUnlock) and the new thread
must then lock it (using astLock) before the new thread can use the Object.

The "wait" parameter determines what happens if the supplied Object is curently locked by another
thread when this function is invoked.
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void astLock( AstObject xthis, int wait )

Parameters:

this

Pointer to the Object to be locked.

wait

Class App

If the Object is curently locked by another thread then this function will either report an
error or block. If a non-zero value is supplied for "wait", the calling thread waits until the
object is available for it to use. Otherwise, an error is reported and the function returns
immediately without locking the Object.

licability:

Object

Notes:

This function applies to all Objects.

The astAnnul function is exceptional in that it can be used on pointers for Objects that are
not currently locked by the calling thread. All other AST functions will report an error.

The Locked object will belong to the current AST context.
This function returns without action if the Object is already locked by the calling thread.

If simultaneous use of the same object is required by two or more threads, astCopy should
be used to to produce a deep copy of the Object for each thread. Each copy should then be
unlocked by the parent thread (i.e. the thread that created the copy), and then locked by
the child thread (i.e. the thread that wants to use the copy).

This function is only available in the C interface.

This function returns without action if the AST library has been built without POSIX thread
support (i.e. the "-with-pthreads" option was not specified when running the "configure"
script).

astLutMap Create a LutMap astLutMap

Descriptio

n: This function creates a new LutMap and optionally initialises its attributes.

A LutMap is a specialised form of Mapping which transforms 1-dimensional coordinates by using
linear interpolation in a lookup table. Each input coordinate value is first scaled to give the index

of an

entry in the table by subtracting a starting value (the input coordinate corresponding to the

first table entry) and dividing by an increment (the difference in input coordinate value between
adjacent table entries).

The resulting index will usually contain a fractional part, so the output coordinate value is then
generated by interpolating linearly between the appropriate entries in the table. If the index lies
outside the range of the table, linear extrapolation is used based on the two nearest entries (i.e.
the two entries at the start or end of the table, as appropriate).

If the

lookup table entries increase or decrease monotonically, then the inverse transformation may

also be performed.

Synopsis:  AstLutMap xastLutMap( int nlut, const double lut[], double start, double inc,
const char xoptioms, ... )

Parameters:
nlut

The number of entries in the lookup table. This value must be at least 2.
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lut
An array containing the "nlut" lookup table entries.

start
The input coordinate value which corresponds to the first lookup table entry.

inc
The lookup table spacing (the increment in input coordinate value between successive lookup
table entries). This value may be positive or negative, but must not be zero.

options
Pointer to a null-terminated string containing an optional comma-separated list of attribute
assignments to be used for initialising the new LutMap. The syntax used is identical to that
for the astSet function and may include "printf" format specifiers identified by "%" symbols
in the normal way.

If the "options" string contains "%" format specifiers, then an optional list of additional
arguments may follow it in order to supply values to be substituted for these specifiers. The
rules for supplying these are identical to those for the astSet function (and for the C "printf"
function).

Returned Value:
astLutMap()
A pointer to the new LutMap.

Notes:

e If the entries in the lookup table either increase or decrease monotonically, then the new
LutMap’s TranInverse attribute will have a value of one, indicating that the inverse transfor-
mation can be performed. Otherwise, it will have a value of zero, so that any attempt to use
the inverse transformation will result in an error.

e A null Object pointer (AST__NULL) will be returned if this function is invoked with the
AST error status set, or if it should fail for any reason.

Status Handling:

The protected interface to this function includes an extra parameter at the end of the parameter
list descirbed above. This parameter is a pointer to the integer inherited status variable: "int
*status".

astMapBox Find a bounding box for a Mapping astMapBox

Description: This function allows you to find the "bounding box" which just encloses another box after
it has been transformed by a Mapping (using either its forward or inverse transformation). A
typical use might be to calculate the size of an image after being transformed by a Mapping.

The function works on one dimension at a time. When supplied with the lower and upper bounds
of a rectangular region (box) of input coordinate space, it finds the lowest and highest values
taken by a nominated output coordinate within that region. Optionally, it also returns the input
coordinates where these bounding values are attained. It should be used repeatedly to obtain the
extent of the bounding box in more than one dimension.

Synopsis: void astMapBox( AstMapping *this, const double lbnd_in[], const double ubnd_in[],
int forward, int coord_out, double xlbnd_out, double xubnd_out, double x1[], double
xull );

Parameters:
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this
Pointer to the Mapping.

Ibnd_in
Pointer to an array of double, with one element for each Mapping input coordinate. This
should contain the lower bound of the input box in each input dimension.

ubnd_in
Pointer to an array of double, with one element for each Mapping input coordinate. This
should contain the upper bound of the input box in each input dimension.
Note that it is permissible for the upper bound to be less than the corresponding lower bound,
as the values will simply be swapped before use.

forward

If this value is non-zero, then the Mapping’s forward transformation will be used to transform
the input box. Otherwise, its inverse transformation will be used.

(If the inverse transformation is selected, then references to "input" and "output" coordi-
nates in this description should be transposed. For example, the size of the "lbnd_in" and
"ubnd_in" arrays should match the number of output coordinates, as given by the Mapping’s
Nout attribute. Similarly, the "coord_out" parameter, below, should nominate one of the
Mapping’s input coordinates.)

coord_out
The index of the output coordinate for which the lower and upper bounds are required. This
value should be at least one, and no larger than the number of Mapping output coordinates.

Ibnd_out
Pointer to a double in which to return the lowest value taken by the nominated output
coordinate within the specified region of input coordinate space.

ubnd_out
Pointer to a double in which to return the highest value taken by the nominated output
coordinate within the specified region of input coordinate space.

x1
An optional pointer to an array of double, with one element for each Mapping input coordi-
nate. If given, this array will be filled with the coordinates of an input point (although not
necessarily a unique one) for which the nominated output coordinate attains the lower bound
value returned in "xlbnd_out".

If these coordinates are not required, a NULL pointer may be supplied.

xu
An optional pointer to an array of double, with one element for each Mapping input coor-
dinate. If given, this array will be filled with the coordinates of an input point (although
not necessarily a unique one) for which the nominated output coordinate attains the upper
bound value returned in "xubnd_out".

If these coordinates are not required, a NULL pointer may be supplied.

Notes:

e Any input points which are transformed by the Mapping to give output coordinates containing
the value AST__BAD are regarded as invalid and are ignored. They will make no contribution
to determining the output bounds, even although the nominated output coordinate might still
have a valid value at such points.

e An error will occur if the required output bounds cannot be found. Typically, this might
happen if all the input points which the function considers turn out to be invalid (see above).
The number of points considered before generating such an error is quite large, so this is
unlikely to occur by accident unless valid points are restricted to a very small subset of the
input coordinate space.



276 B AST FUNCTION DESCRIPTIONS

e The values returned via "lbnd_out", "ubnd_out", "xI" and "xu" will be set to the value
AST__BAD if this function should fail for any reason. Their initial values on entry will not
be altered if the function is invoked with the AST error status set.

astMapCopy Copy entries from one KeyMap into astMapCopy
another

Description: This function copies all entries from one KeyMap into another.
Synopsis: void astMapCopy( AstKeyMap xthis, AstKeyMap xthat )

Parameters:
this
Pointer to the destination KeyMap.

that
Pointer to the source KeyMap.

Notes:

e Entries from the source KeyMap will replace any existing entries in the destination KeyMap
that have the same key.

e The one exception to the above rule is that if a source entry contains a scalar KeyMap entry,
and the destination contains a scalar KeyMap entry with the same key, then the source
KeyMap entry will be copied into the destination KeyMap entry using this function, rather
than simply replacing the destination KeyMap entry.

e If the destination entry has a non-zero value for its MapLocked attribute, then an error will
be reported if the source KeyMap contains any keys that do not already exist within the
destination KeyMap.

astMapDefined Check if a KeyMap contains a astMapDefined
defined value for a key

Description: This function checks to see if a KeyMap contains a defined value for a given key. If the
key is present in the KeyMap but has an undefined value it returns zero (unlike astMapHasKey
which would return non-zero).

Synopsis: int astMapDefined( AstKeyMap *this, const char xkey );

Parameters:

this
Pointer to the KeyMap.
key
The character string identifying the value to be retrieved. Trailing spaces are ignored. The

supplied string is converted to upper case before use if the KeyCase attribute is currently set
to zero.

Returned Value:

astMapDefined()
A non-zero value is returned if the requested key name is present in the KeyMap and has a
defined value.
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astMapGet0<X> Get a scalar value from a astMapGet0<X>
KeyMap

Description: This is a set of functions for retrieving a scalar value from a KeyMap. You should replace
<X> in the generic function name astMapGet0<X> by an appropriate 1-character type code (see
the "Data Type Codes" section below for the code appropriate to each supported data type). The
stored value is converted to the data type indiced by <X> before being returned (an error is
reported if it is not possible to convert the stored value to the requested data type).

Synopsis: int astMapGetO<X>( AstKeyMap #this, const char xkey, <X>type xvalue );

Parameters:
this
Pointer to the KeyMap.
key
The character string identifying the value to be retrieved. Trailing spaces are ignored. The
supplied string is converted to upper case before use if the KeyCase attribute is currently set
to zero.

value
A pointer to a buffer in which to return the requested value. If the requested key is not found,
or if it is found but has an undefined value (see astMapPutU), then the contents of the buffer
on entry to this function will be unchanged on exit. For pointer types ("A" and "C"), the
buffer should be a suitable pointer, and the address of this pointer should be supplied as the
"value" parameter.

Returned Value:

astMapGet0<X>()
A non-zero value is returned if the requested key name was found, and does not have an
undefined value (see astMapPutU). Zero is returned otherwise.

Notes:

e No error is reported if the requested key cannot be found in the given KeyMap, but a zero
value will be returned as the function value. The supplied buffer will be returned unchanged.

e If the stored value is a vector value, then the first value in the vector will be returned.

e A string pointer returned by astMapGetOC is guaranteed to remain valid and the string to
which it points will not be over-written for a total of 50 successive invocations of this function.
After this, the memory containing the string may be re-used, so a copy of the string should
be made if it is needed for longer than this.

e If the returned value is an AST Object pointer, the Object’s reference count is incremented
by this call. Any subsequent changes made to the Object using the returned pointer will be
reflected in any any other active pointers for the Object. The returned pointer should be
annulled using astAnnul when it is no longer needed.

Data Type Codes:

To select the appropriate function, you should replace <X> in the generic function name astMapGet0<X>
with a 1-character data type code, so as to match the data type <X>type of the data you are
processing, as follows:

e I float
e D: double

e I: int
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C: "const" pointer to null terminated character string

A: Pointer to AstObject

e P: Generic "void *" pointer
e S: short int
e B: Unsigned byte (i.e. word)

For example, astMapGet0D would be used to get a "double" value, while astMapGetOI would be
used to get an "int", etc.

astMapGetl<X> Get a vector value from a astMapGetl<X>
KeyMap

Description: This is a set of functions for retrieving a vector value from a KeyMap. You should replace
<X> in the generic function name astMapGet1<X> by an appropriate 1-character type code (see
the "Data Type Codes" section below for the code appropriate to each supported data type).
The stored value is converted to the data type indiced by <X> before being returned (an error
is reported if it is not possible to convert the stored value to the requested data type). Note, the
astMapGet1C function has an extra parameter "1" which specifies the maximum length of each
string to be stored in the "value" buffer (see the "astMapGet1C" section below).

Synopsis:  int astMapGetl1<X>( AstKeyMap *this, const char xkey, int mxval, int *nval, <X>type
xvalue ) int astMapGetl1C( AstKeyMap *this, const char xkey, int 1, int mxval, int snval,
const char *value )

Parameters:

this
Pointer to the KeyMap.

key
The character string identifying the value to be retrieved. Trailing spaces are ignored. The
supplied string is converted to upper case before use if the KeyCase attribute is currently set
to zero.

mxval
The number of elements in the "value" array.

nval
The address of an integer in which to put the number of elements stored in the "value" array.
Any unused elements of the array are left unchanged.

value

A pointer to an array in which to return the requested values. If the requested key is not
found, or if it is found but has an undefined value (see astMapPutU), then the contents of
the buffer on entry to this function will be unchanged on exit.

Returned Value:

astMapGet1<X>()
A non-zero value is returned if the requested key name was found, and does not have an
undefined value (see astMapPutU). Zero is returned otherwise.

Notes:

e No error is reported if the requested key cannot be found in the given KeyMap, but a zero
value will be returned as the function value. The supplied array will be returned unchanged.
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e If the stored value is a scalar value, then the value will be returned in the first element of the
supplied array, and "nval" will be returned set to 1.

astMapGet1C:

The "value" buffer supplied to the astMapGet1C function should be a pointer to a character array
with "mxval#]" elements, where "1" is the maximum length of a string to be returned. The value
of "1" should be supplied as an extra parameter following "key" when invoking astMapGet1C, and
should include space for a terminating null character.

Data Type Codes:

To select the appropriate function, you should replace <X> in the generic function name astMapGet1<X>
with a l-character data type code, so as to match the data type <X>type of the data you are
processing, as follows:

e D: double

e F: float

e [ int

e (C: "const" pointer to null terminated character string

e A: Pointer to AstObject

e P: Generic "void *" pointer

e S: short int

e B: Unsigned byte (i.e. char)
For example, astMapGet1D would be used to get "double" values, while astMapGet1I would be
used to get "int" values, etc. For D or I, the supplied "value" parameter should be a pointer to an
array of doubles or ints, with "mxval" elements. For C, the supplied "value" parameter should be

a pointer to a character string with "mxval*1" elements. For A, the supplied "value" parameter
should be a pointer to an array of AstObject pointers.

astMapGetElem<X> Get a single astMapGetElem<X>

element of a vector
value from a
KeyMap

Description: This is a set of functions for retrieving a single element of a vector value from a KeyMap.
You should replace <X> in the generic function name astMapGetElem<X> by an appropriate
1-character type code (see the "Data Type Codes" section below for the code appropriate to each
supported data type). The stored value is converted to the data type indiced by <X> before being
returned (an error is reported if it is not possible to convert the stored value to the requested
data type). Note, the astMapGetElemC function has an extra parameter "1" which specifies the
maximum length of the string to be stored in the "value" buffer (see the "astMapGetElemC"
section below).

Synopsis: int astMapGetElem<X>( AstKeyMap *this, const char xkey, int elem, <X>type *value
) int astMapGetElemC( AstKeyMap *this, const char xkey, int 1, int elem, char xvalue
)
Parameters:
this
Pointer to the KeyMap.
key
The character string identifying the value to be retrieved. Trailing spaces are ignored. The

supplied string is converted to upper case before use if the KeyCase attribute is currently set
to zero.
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elem
The index of the required vector element, starting at zero. An error will be reported if the
value is outside the range of the vector.

value
A pointer to a buffer in which to return the requested value. If the requested key is not found,
or if it is found but has an undefined value (see astMapPutU), then the contents of the buffer
on entry to this function will be unchanged on exit.

Returned Value:

astMapGetElem<X>()
A non-zero value is returned if the requested key name was found, and does not have an
undefined value (see astMapPutU). Zero is returned otherwise.

Notes:
e No error is reported if the requested key cannot be found in the given KeyMap, or if i