next | previous | forward | backward | up | top | index | toc | Macaulay2 web site

factor(Module) -- factor a ZZ-module

Synopsis

Description

The ring of M must be ZZ.

In the following example we construct a module with a known (but disguised) factorization.

i1 : f = random(ZZ^6, ZZ^4)

o1 = | 7 2 5 1 |
     | 1 6 6 5 |
     | 4 9 2 2 |
     | 6 3 4 2 |
     | 2 2 1 3 |
     | 8 6 7 4 |

              6        4
o1 : Matrix ZZ  <--- ZZ
i2 : M = subquotient ( f * diagonalMatrix{2,3,8,21}, f * diagonalMatrix{2*11,3*5*13,0,21*5} )

o2 = subquotient (| 14 6  40 21  |, | 154 390  0 105 |)
                  | 2  18 48 105 |  | 22  1170 0 525 |
                  | 8  27 16 42  |  | 88  1755 0 210 |
                  | 12 9  32 42  |  | 132 585  0 210 |
                  | 4  6  8  63  |  | 44  390  0 315 |
                  | 16 18 56 84  |  | 176 1170 0 420 |

                                 6
o2 : ZZ-module, subquotient of ZZ
i3 : factor M

          ZZ   ZZ    ZZ
o3 = ZZ + -- + -- + ----
           5   11   5*13

o3 : Expression of class Sum